Friday, December 30, 2016

New Dissolved Ozone Sensor

dissolved ozone sensor for industrial use in pure water
Mettler Toledo, under the Thornton brand, has released a dissolved ozone sensor employing the company's Intelligent Sensor Management technology that helps to streamline the use of sensors for measuring pH, conductivity, dissolved oxygen or ozone, and a host of other aspects of pure water. The pureO3 sensor technology provides rapid response in a sensor assembly with a built in digital measuring circuit and Intelligent Sensor Management (ISM®). The pureO3 is designed for monitoring low concentrations of dissolved ozone in semiconductor and pharmaceutical pure water samples, bottled water and similar applications. Minimal maintenance requirements and reliable long-term operation are hallmarks of this sensor.
How it works, in the company's own words...
"The pureO3 sensor uses a gas permeable membrane to separate the sample from the electrochemical cell inside. Ozone diffuses through the membrane in direct proportion to the partial pressure of ozone outside the sensor.The cathode and anode inside the sensor are polarized with a voltage to enable the electrochemical reaction of ozone. Ozone is reduced at the cathode while the anode is oxidized, producing a current in direct proportion to the amount of ozone present. The very low current developed by these sensors allows them to have a long life with low maintenance. An embedded temperature sensor enables temperature compensation to adjust for the changing permeability of
the membrane with temperature. In addition, the instrument uses the temperature value to convert the ozone partial pressure signal to a dissolved ozone concentration value by compensating for the changing solubility of ozone with temperature."
Benefits to the user from the ISM® based sensor.
  • Full sensor identification by type and serial number.
  • Calibration history with actual calibration, factory calibration, and last three calibration.
  • Programmable timer to facilitate maintenance planning, reducing downtime.
  • Starting calibration interval of 90 days.
  • Time to maintenance function integrates ozone concentration over time, indicating replacement time for membrane body and electrolyte.
  • Dynamic Lifetime Indicator for inner body used ozone concentration integration to predict life of inner body and membrane. Starting values, membrane body lifetime 180 days, inner body 1080 days.
  • Sanitization counter allows the limit of ozone concentration and duration of sanitization cycleto be defined on the transmitter.
The pureO3 sensor with ISM operates with the M800 and M300 transmitters. ISM features enable users to maximize the lifetime of the sensors and minimize downtime by predicting when sensor maintenance is required. Contact a product application specialist for all the details. Share your process measurement challenges with experts, combining your process knowledge with their application expertise to develop the best solutions.

Wednesday, December 21, 2016

Technical Reference for Thermocouples and Reistance Temperature Detectors (RTD)

industrial temperature sensor transmitter with mounting flange and head
One of many industrial
temperature sensor
configurations
Smart Sensors, Inc.
Temperature measurement is probably employed in process control more than any other physical property measurement. Methodology for temperature measurement is well established, as is the industry providing instruments and devices for acquiring temperature data from almost any facet of any process. If you are even peripherally involved in process measurement and control, having a solid understanding of how thermocouples and RTDs work is a requisite to solving problems or servicing customers.

One manufacturer of a comprehensive line of thermocouple and RTD assemblies, Smart Sensors, Inc., produced a technical manual with all you need to know about temperature sensors for process measurement and control. The manual is included below for easy reference. It covers:

  • Thermocouple theory
  • RTD and thermocouple specification criteria
  • Cable specifications for both sensor types
  • Comparison of thermocouple and RTD attributes
  • Thermowell and protection tube specification and selection
  • Specifying temperature sensors for hazardous areas
  • Reference data tables for both sensor types
  • Practices for improving temperature measurement
  • Calibration
The tech manual should be on the shelf or cloud drive of anyone involved in accomplishing, interpreting, or maintaining temperature measurement. The configuration options for temperature sensor assemblies are extensive. Reach out to a product application specialist and combine your process knowledge with their product application expertise to develop effective solutions to temperature measurement challenges.




Thursday, December 15, 2016

Alliance Adds Thornton to Process Analytical Instrument Offering

process analytic sensor and transmitter dissolved oxygen ph toc
Alliance Technical Sales, experienced provider of process analytical solutions throughout many industries, has added the Thornton brand of instruments to expand its offering of Mettler Toledo analytical products. Thornton specializes in on-line liquid process measurement solutions for pure and ultrapure water applications. The product line includes instrumentation and sensors providing high quality measurement of conductivity/resistivity, TOC, pH, ORP, dissolved oxygen, dissolved ozone, sodium, silica and bioburden. The Thornton line complements and expands the extent of Mettler Toledo products already available from Alliance Technical Sales.

Share your fluid process analytical challenges with product application experts, combining your process knowledge and experience with their product application expertise to develop effective solutions.



Wednesday, December 7, 2016

Alliance Technical Sales Overview

industrial engineers consult with product specialist
Alliance Technical Sales works with customers
to develop effective solutions to process measurement
and control challenges.
Alliance Technical Sales represents and distributes for a number of process measurement and control equipment and instrument manufacturers throughout the midwest United States. A specialty of the company is in-line liquid analytical solutions, along with other related fields.

The professionals at Alliance combine world class products with real application expertise and passion to be the best at what they do. For over 15 years, the company has been helping its customers boost efficiency, safety, and effectiveness.

The company's current product offering is included below. Reach out to Alliance Technical Sales for a partner in solving your process measurement and control challenges.



Wednesday, November 30, 2016

Combustion Control in Gas Turbines

gas turbine
Proper inlet air control can boost gas turbine efficiency
Gas turbines continue to enjoy an expansion in their use throughout the world. The benefits of using gas as a fuel are well recognized. Achieving high levels of fuel efficiency will be a goal of every operator, so understanding the nature of combustion and fuels can be useful in attaining optimum operating conditions.

Vaisala, a globally recognized leader in the measurement of temperature and humidity, was authored a white paper application note that explains how the temperature and humidity of inlet air can contribute to combustion efficiency, as well as providing recommendations for measuring these parameters in gas turbine applications.

The white paper is included below. Share your process measurement requirements and challenges with application experts. Combine your process knowledge with their product application expertise to deliver effective solutions.


Tuesday, November 15, 2016

Close Temperature Control of a Process Fluid Flow


sanitary temperature sensor RTD thermocouple
Temperature sensor is one component
of a successful temperature control
system
Courtesy Smart Sensors, Inc.
Temperature control is a common operation in the industrial arena. Its application can range across solids, liquids, and gases. The dynamics of a particular operation will influence the selection of instruments and equipment to meet the project requirements. In addition to general performance requirements, safety should always be a consideration in the design of a temperature control system involving enough energy to damage the system or create a hazardous condition.

Let's narrow the application range to non-flammable flowing fluids that require elevated temperatures. In the interest of clarity, this illustration is presented without any complicating factors that may be encountered in actual practice. Much of what is presented here, however, will apply universally to other scenarios.
What are the considerations for specifying the right equipment?

KNOW YOUR FLOW


First and foremost, you must have complete understanding of certain characteristics of the fluid.

  • Specific Heat - The amount of heat input required to increase the temperature of a mass unit of the media by one degree.
  • Minimum Inlet Temperature - The lowest media temperature entering the process and requiring heating to a setpoint. Use the worst (coldest) case anticipated.
  • Mass Flow Rate - An element in the calculation for total heat requirement. If the flow rate will vary, use the maximum anticipated flow.
  • Maximum Required Outlet Temperature - Used with minimum inlet temperature in the calculation of the maximum heat input required.

SELECT SYSTEM COMPONENTS WITH PERFORMANCE TO MATCH THE PROJECT


  • Heat Source - If temperature control with little deviation from a setpoint is your goal, electric heat will likely be your heating source of choice. It responds quickly to changes in a control signal and the output can be adjusted in very small increments to achieve a close balance between process heat requirement and actual heat input. 
  • Sensor - Sensor selection is critical to attaining close temperature control. There are many factors to consider, well beyond the scope of this article, but the ability of the sensor to rapidly detect small changes in media temperature is a key element of a successful project. Attention should be given to the sensor containment, or sheath, the mass of the materials surrounding the sensor that are part of the assembly, along with the accuracy of the sensor.
  • Sensor Location - The location of the temperature sensor will be a key factor in control system performance. The sensing element should be placed where it will be exposed to the genuine process condition, avoiding effects of recently heated fluid that may have not completely mixed with the balance of the media. Locate too close to the heater and there may be anomalies caused by the heater. A sensor installed too distant from the heater may respond too slowly. Remember that the heating assembly, in whatever form it may take, is a source of disturbance to the process. It is important to detect the impact of the disturbance as early and accurately as possible.
  • Controller - The controller should provide an output that is compatible with the heater power controller and have the capability to provide a continuously varying signal or one that can be very rapidly cycled. There are many other features that can be incorporated into the controller for alarms, display, and other useful functions. These have little bearing on the actual control of the process, but can provide useful information to the opeartor. 
  • Power Controller - A great advantage of electric heaters is their compatibility with very rapid cycling or other adjustments to their input power. A power controller that varies the total power to the heater in very small increments will allow for fine tuning the heat input to the process.
  • Performance Monitoring - Depending upon the critical nature of the heating activity to overall process performance, it may be useful to monitor not only the media temperature, but aspects of heater or controller performance that indicate the devices are working. Knowing something is not working sooner, rather than later, is generally beneficial. Controllers usually have some sort of sensor failure notification built in. Heater operation can be monitored my measurement of the circuit current.

SAFETY CONSIDERATIONS


Any industrial heater assembly is capable of producing surface temperatures hot enough to cause trouble. Monitoring process and heater performance and operation, providing backup safety controls, is necessary to reduce the probability of damage or catastrophe.

  • High Fluid Temperature - An independent sensor can monitor process fluid temperature, with instrumentation providing an alert and limit controllers taking action if unexpected limits are reached.
  • Heater Temperature - Monitoring the heater sheath temperature can provide warning of a number of failure conditions, such as low fluid flow, no fluid present, or power controller failure. A proper response activity should be automatically executed when unsafe or unanticipated conditions occur.
  • Media Present - There are a number of ways to directly or indirectly determine whether media is present. The media, whether gaseous or liquid, is necessary to maintain an operational connection between the heater assembly and the sensor. 
  • Flow Present - Whether gaseous or liquid media, flow is necessary to keep most industrial heaters from burning out. Understand the limitations and operating requirements of the heating assembly employed and make sure those conditions are maintained. 
  • Heater Immersion - Heaters intended for immersion in liquid may have watt density ratings that will produce excessive or damaging element temperatures if operated in air. Strategic location of a temperature sensor may be sufficient to detect whether a portion of the heater assembly is operating in air. An automatic protective response should be provided in the control scheme for this condition.
Each of the items mentioned above is due careful consideration for an industrial fluid heating application. Your particular process will present its own set of specific temperature sensing challenges with respect to performance and safety. Share your requirements with temperature sensing experts, combining your process knowledge with their expertise to develop safe and effective solutions.

Wednesday, November 9, 2016

Direct Insertion Gaseous Oxygen Sensor - No Sampling

insertion type gaseous oxygen sensor
Ingold 6800G insertion sensor for gaseous oxygen
Courtesy Mettler Toledo
Gas phase oxygen measurement is used industrially for process safety and the prevention of oxidation. The ability to obtain oxygen level readings in real time can be advantageous in both application classes. While numerous measurement methods are available, Ingold (Mettler Toledo) provides a rugged and robust solution in their direct insertion sensors. Some measurement systems require gas sampling or conditioning, but the Ingold sensor is inserted directly into the process to provide fast and accurate oxygen readings. Coupling the direct insertion feature with Ingold's Intelligent Sensor Management delivers fast and direct O2 measurements with minimized maintenance, no sampling or conditioning, and limited downtime.

There is more to be learned. Reach out to a product application specialist and share your O2 measurement challenges. Combine your process knowledge with their product application expertise to develop the best solutions.



Wednesday, November 2, 2016

New Laser Level Transmitter Brings Application Advantages for Process Measurement

laser level transmitter for industrial application process measurement
Jogler, manufacturer of level measurement instruments, has released the new Model LLT 1000 Laser Level Transmitter for industrial process measurement and control applications. The newly designed instrument provides continuous non-contact level measurement for process automation and inventory management across an array of industrial applications.

The laser level transmitter provides reliable measurement of solids or liquids, even clear liquids. Long measuring range, narrow beam, and high accuracy make the LLT 1000 suitable for application in silos, tanks, hoppers, chutes, and bunkers.

The data sheet below provides more detail on the new level measurement instrument. Share your level measurement requirements and challenges with a product application specialist, combing your process knowledge with their product expertise to develop effective solutions.

Monday, October 24, 2016

New Website Design for Alliance Technical Sales

home page of website for alliance technical sales
Alliance Technical Sales has a redesigned website
Alliance Technical Sales, manufacturer's representative and distributor of industrial process measurement and control equipment, has released a newly designed website which brings new functionality and easy navigation for visitors.

The newly designed site provides simple and rapid access to technical information regarding an array of process measurement and control products. Direct links to represented manufacturers is provided, as well as simple contact avenues to get visitors information quickly. The site is mobile friendly, adjusting its layout to accommodate whatever device the visitor is using and provide easily readable page views.

ATS now has an ongoing social media presence, with weekly blog posts about products and technical issues. All of the social media channels are directly accessible from the website.

Alliance Technical Sales is fully committed to providing top flight service to its customers. Visit the new website and reach out to ATS with your process measurement and control challenges.

Tuesday, October 18, 2016

Optical Sensor for Dissolved Oxygen Monitoring in Breweries



Dissolved oxygen measurements are an essential part of the brewing process. Keeping oxygen out of beer is a key production goal of brewers on any scale, since oxygen noticeably diminishes the taste of beer.

The measurement levels for oxygen are very low, so a sensor with high accuracy and response is needed. Hygienic construction and the ability to accommodate CIP operations is also a plus. Any features that reduce maintenance time budget enhance the value of the instrument.

The video, provided by Mettler Toledo, provides useful insight into how their optical DO sensor can benefit a brewing operation.

More detail, as well as application assistance, is available from product specialists. Combining your process knowledge and experience with their product application expertise will deliver effective solutions.

Tuesday, October 11, 2016

Transformer Monitoring for Hydrogen, Moisture, and Temperature

transformer moisture hydrogen temperature monitor transmitter
Specialized transmitter for monitoring moisture,
hydrogen, and temperature levels in electrical
transformers. (Vaisala)
Electrical transformers are an intricate part of the power transmission and distribution system. Many transformers are insulated with mineral oil that also facilitates heat transfer for unit cooling. Abnormal thermal and electrical stresses, such as local overheating and electrical discharge ocurring in the transformer, cause decomposition of insulating oil and papers, resulting in production of a range of gases, one of which is hydrogen.

Routine dissolved gas analysis, or DGA, is performed on oil filled transformers to provide a measure of unit health. The process involves the extraction of an oil sample from the transformer, which is then subjected to laboratory analysis. The process is manual, time consuming, and only performed infrequently. It is known that the presence or increasing levels of certain gases is an indicator of internal faults or general wear and tear in a transformer. A reliable stream of data can provide value as a predictive indicator of overall transformer health and maintenance requirements. The endgame is to prevent unit failure and the resultant shutdown of connected customer equipment.

General recommendations call for trend monitoring of hydrogen. The rate of change in the concentration can be more indicative than the overall level in some cases. Any rapid change is a harbinger of potential problems. Adopting a proactive approach, based on transformer oil condition, can extend transformer useful life.

Moisture content of transformer oil is another concern. The presence of water boosts oil and paper insulation deterioration. Water presence in transformers generally has two potential sources, atmospheric and internal. The sources of moisture in the oil are not a subject of this article, but water reduces the dielectric strength of insulating oil and can facilitate corrosion or other material degradation within the transformer case.

Internal temperature is an indicator of the current operating condition of a transformer and is useful in evaluating its performance.

All three of the parameters mentioned, moisture, hydrogen, and temperature, are continuously measured by the new MHT-410 from Vaisala. The transmitter provides three isolated loop powered 4-20 mA outputs that provide the user with continuous data on moisture content, hydrogen concentration, and oil temperature. The compact unit installs easily in less than 30 minutes to provide online monitoring of insulating oil without any need for pumps, membranes, or sampling.

The new MHT410 provides real time transformer health monitoring, as well as information on transformer fault situations. You can find out more with a review of the data sheet included below. Reach out to a product specialist with your measurement challenges.


Wednesday, October 5, 2016

Magnetostrictive Level Transmitter Retrofit to Magnetic Level Gauge

magnetic liquid level gauge fitted with low profile magnetostrictive transmitter
This magnetic level gauge has been fitted
with a magnetostrictive transmitter to
provide a continuous process level signal
Jogler
A magnetic liquid level indicator provides a reliable and highly visible reading of its indirect level measurement in tanks and vessels. While useful for local visual indication of tank level, the instrument does not provide an electrical signal output that can be utilized for process control or other monitoring functions. Several magnetic level gauge manufacturers offer combination units that incorporate another measurement technology to provide an analog signal corresponding to liquid level.
What if your installation has an existing magnetic level indicator and you need an analog level signal?
One manufacturer, Jogler, offers a magnetostrictive level measurement instrument that can be retrofitted to an existing magnetic level gauge, even those from other manufacturers. The low profile waveguide mounts slightly away from the existing magnetic level unit to isolate it from temperature and vibration. It is specifically designed for use with an existing magnetic level indicator and provides an analog output signal that is accurate, stable, and responsive.

A magnetostrictive level measurement instrument employs a magnetic float that moves along a sensing wire as the tank level changes. Fixed interval current pulses are sent down the wire, with the resulting electromagnetic field being interrupted by the magnetized float. This interruption causes magnetostriction in the sensing wire, which is manifested as a torsional stress wave along the wire. A piezoceramic sensing element converts the torsional stress into an electrical signal and the transmitter produces an output signal based upon the time interval between the initial pulse and the return pulse produced as a function of the float position.

There is more to be learned, so share your liquid level measurement requirements and challenges with instrumentation specialists. The combination of your process knowledge and their product application expertise will produce effective solutions.



Wednesday, September 28, 2016

Continuous Microbial Monitoring For Pharmaceutical Waters

continuous on-line microbial monitor for pharmaceutical waters
Monitoring process water microbial counts in the pharmaceutical industry has traditionally been a time consuming, hands-on operation. Sample preparation, plate counting, stains, reagents, and the time required to get results has kept microbial monitoring a cumbersome task that provides only snapshots of the process water quality at the time of sampling.

Mettler Toledo has introduced its Model 7000RMS, a continuous on-line microbial monitoring system for purified water and water for injection. The system uses advanced laser based technology to provide immediate detection and quantification of microorganisms. Particles as small as .52 microns can be detected, and the monitor uses recent advancements in spectroscopic technology to differentiate between microbial and inert particles.

The 7000RMS puts on-line analytics for microbial contamination on the same timeline as TOC and conductivity, with all three critical aspects now subject to real time measurement.

The white paper included below delivers a deeper and more detailed view of the technology and the how the system works. Detailed application and product information is available from product specialists.


Wednesday, September 21, 2016

Thermal Oxidation Applied For Emissions Control

smoke stack with pollution emission
Pollution control - Part of successful plant operation
Thermal oxidation is a process employed in a number of diverse industries as a means of pollution and emissions control. Essentially, the process uses heat to promote the breakdown of hazardous air pollutants and volatile organic compounds into less harmful byproducts. Many pollutants are hydrocarbon based and when properly processed will oxidize efficiently and provide an output consisting primarily of H2O and CO2.

The process employs a number of inputs, aside from the subject pollutant stream. A fuel input is needed to maintain the elevated temperature that will force oxidation of the pollutants. Being essentially a combustion operation, there are opportunities to boost efficiency and minimize the expenditure for the fuel inputs. Heat recovery is an essential element of achieving high efficiency levels. This can take many forms, depending upon what the energy needs of the facility might be. One option is a waste heat boiler to produce steam for other plant operations. There are many other options which will be discovered with a thorough review and analysis of the plant operations.

Process Combustion Corporation, a recognized manufacturer of oxidation technology, defines thermal oxidation, as it applies to pollution and emissions control, like this:
Thermal oxidation is the effective employment of a process that provides thorough mixing of an organic substance with sufficient oxygen, at a high enough temperature, for a sufficient time, to cause the organics to oxidize to the desired degree of completion.
Achieving effective utilization of a thermal oxidation system requires the application of experienced engineering talent. Share your emissions and pollution control requirements and challenges with specialists. Combining your knowledge of plant facilities and operation with their pollution control expertise will produce effective solutions.


Thursday, September 15, 2016

Automatic Sensor Cleaning Is Included on Disinfectant Analyzer

Fluid analyzer for Free Chlorine, Chlorine Dioxide, Ozone and Hydrogen Peroxide
The Krypton® Multi Analyzer Features
Automatic Sensor Cleaning
Kuntze Instruments
Keeping electrode type sensors clean is essential to maintaining accurate and reliable readings. The frequency of maintenance depends upon the application, but any reduction in the requirement to manually clean or replace sensors is certainly a positive development.

Kuntze Instruments developed a method of automatic cleaning for sensors employed on their Krypton® line of disinfectant analyzers.

  • Free Chlorine
  • Chlorine Dioxide
  • Ozone
  • Hydrogen Peroxide
The automatic sensor cleaning system is shown in action on the video below, and you can get more detailed information about the Krypton® disinfectant analyzers and the automatic sensor cleaning system from product specialists. Share your liquid and gas analysis requirements and challenges with application specialists, combining your process knowledge with their product application expertise to produce effective solutions.


Tuesday, September 6, 2016

Specific Gravity Analyzer for Fluid Process Applications

specific gravity analyzer for industrial process liquid
Speicifc Gravity Analyzer
Jogler 
Specific gravity is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume (Thank you, Wikipedia).  Often the reference substance for liquids is pure water at a temperature of +4°C, which is assigned a value of 1.0. The specific gravity measurement is used throughout many industries as a measure of concentration in a solution. An example would be the concentration of sugar in a solution of water and sugar. 

For purposes of process analysis, an instrument providing continuous measurement is generally advantageous since its operation accommodates the changing nature of the process. One device employs two tubes and a calibrated float to provide a continuous display of a liquid's specific gravity. Liquid from the process fluid sample line enters the bottom of the inner tube containing the float. A very small sample flow rate is needed. The float is calibrated for the subject process liquid and has a reference scale from which the specific gravity is manually read. The sample fluid overflows the inner tube, collecting in the outer tube where it is drained away. The continuous, though small, flow of sample liquid enables each reading to reflect the current process condition.

This simple and effective instrument provides accurate measurement and requires little maintenance. Share all your process fluid analysis challenges with application specialists. Combine your process knowledge with their product application expertise to develop the most effective solutions.


Thursday, September 1, 2016

Temperature and Humidity Transmitters for Industrial Applications

Vaisala enjoys global recognition as a premiere provider of best-in-class humidity and temperature transmitters for industrial process measurement. The video provided here gives an excellent overview of the company's HMT 330 Series with all of its variants for special applications.

Share your temperature and humidity measurement challenges with product specialists, combining your process knowledge with their product application expertise to develop effective solutions.


Wednesday, August 24, 2016

Innovative Tunable Diode Laser TDL Gas Analyzer

Mettler Toledo has developed the first compact TDL with an insertion probe form factor. The instrument requires only a single flange or insertion point in process piping. Several versions are available that accommodate a range of pipeline and media conditions. The video below tells the whole story. Detailed application information is available from product specialists.


Wednesday, August 17, 2016

Deliver Incremental Productivity Boost With Intelligent Sensor Management

Electrode sensors pH measurement
pH/ORP Probes
Mettler Toledo Ingold
It is almost a universal goal that we all must strive to increase productivity and efficiency. Whether factory floor, front office, warehouse, or any other facet of a business, saving time and delivering more output per unit of input is top of mind for business process operators.

Analytical measurement systems for chemical processing are included in the "business processes" mentioned above. Everything done for profit is a business process. Managing analytical instruments and systems for a fluid based process can be time consuming, as well as a significant cost center. There are modern instruments and components that can improve the effectiveness of analytical processes, reducing the recurring financial and manpower expense while improving the reliability and performance of the process.

Mettler Toledo, under their Ingold brand of analytical instruments, has developed their Intelligent Sensor Management (ISM) system to boost product quality and yield, while simultaneously reducing operating costs. The system makes optimum use of digital technology to bring some real user benefits.

  • More precise measurement signal
  • Advanced sensor diagnostics
  • Predictive maintenance functions
  • Rapid sensor change out
The white paper included below provides a clear overview of all that the ISM delivers and how it will save time and expense. Share your analytical challenges with a product specialist and combine your process expertise with their product application knowledge to produce effective solutions.


Thursday, August 11, 2016

Software Boosts Productivity for Batch and Lab Operations

stainless steel pharmaceutical factory equipment
Batch operations can benefit from SCADA
In the biotechnology sphere, repetitive batch operations are good candidates for the use of software to create a SCADA system providing not only control and data acquisition, but to serving as a database of recipes and production data from previous batches that can be compared and analyzed. Productivity can be enhanced by centralizing many functions, making them available to all connected operations.

ILS Automation has developed a software package, Batch Expert+, tailored for use with bioreactors. It also has capability to interface simultaneously with other lab instruments and equipment, providing a single location for all related data. The system is intended to boost productivity by centralizing the data acquisition and control operations, providing tools for trend analysis and other analytical functions.

The company lists some of the main features.
  • One application manages multiple brands/models of fermentors/bioreactors
  • Integrates multiple on-line and off-line field and lab instruments (mass-spec, cell density, external pumps, scales, gas flow controllers, etc.)
  • Common recipes
  • Recipe management
  • Remote monitoring and control
  • Intelligent alarming and alarm management
  • Data historian for process and assay data
  • Reporting and scheduling
  • Open SQL database is easily integrated with other business systems and applications, making Batch Expert+ architecture extensible and customizable
  • Freedom to experiment with new logic
  • Batch trend charting of live, historical, and assay data
  • Time or event-based control
  • 21 CFR Part 11 compliant
There is much more to be learned about how Batch Expert+ can improve performance. Share your batch operation challenges with a product specialist. Combining your process experience and knowledge with their product application expertise will produce the best solutions.



Wednesday, August 3, 2016

PID Controller Action Simply Explained

industrial process PID controller
PID Process Controller
Courtesy Precision Digital
In the industrial control sphere, PID stands for "proportional plus integral and derivative control", three actions used together in managing a control loop. Process loop controllers use one, two or all three of these to regulate a process by responding in a prescribed fashion to disturbances in the process variable. PID control is used in a wide variety of applications in industrial control and process system management.

Many types of PID controllers exist on the market and are used for controlling temperature, pressure, flow, and just about every other process variable. Here is a brief explanation of the three actions that make up the PID algorithm, without the math.
PID control algorithm diagram
PID Control Loop Diagram
Proportional Control Action (P): The controller output responds in proportion to an error signal. Think of error as simply the distance between where you are and where you want to be. A larger error value will generate a larger output response from the controller. When the process value (the measured value of what is being controlled) is close to the setpoint, output response is reduced.

Integral Control Action (I): The control system will increase the output if the error is present over a period of time. This is called integral control action. The integral portion of the algorithm helps drive the process value to the setpoint if the process reaches some equilibrium point that is not the setpoint. The purpose of integral action is to provide adequate control response to varying demands of the process. Integral action does not function independently, requiring the inclusion of proportional action too.

Derivative Control Action (D): To achieve a stable process, wide proportional band and low integral action are often needed. Due to these settings, the control system can exhibit too slow a response pattern. If large system disturbances occur over a wide range, additional elements are needed in the control algorithm to provide suitable response. Derivative control action, added to the effect of proportional and integral, provides response to not only the magnitude of deviation, but also the rate of change of the error.

Modern PID loop controllers are often provided with a function that will automatically select the proper constants for the PID parameters. What used to be a very time consuming and tedious job can now be done with the push of a button and allowing the controller to "learn" the process dynamics. PID controllers minimize error and optimize the accuracy of any process.

Share your control challenges and requirements with product specialists and combine your process knowledge with their product expertise to produce the most effective results.



Tuesday, July 26, 2016

Real Time Direct Process Monitoring With Optical Spectroscopy

optical spectroscopy unit for real time process measurement
Optical spectroscopy unit for real time process measurement
Courtesy Prozess Technologie
Measurement and monitoring of process conditions is an essential part of producing the desired output. Some operations require, or can benefit from, faster or more accurate measurement of process variables. This can be especially true for chemical processes that rely on accurate mixing of components.

Process analyzers are available in a wide variety of technologies, configurations, performance ranges, and price points. Selecting the best analyzer for a particular process, take into consideration these points.

  • Technology - Assess whether the technology is cabable of producing the results needed
  • Accuracy - Measurement at levels appropriate for the process and operating goals
  • Specificity - Ability to reliably measure the subject components
  • First cost
  • Continuing costs of maintenance, expendables, calibration
  • Ease of use and integration into overall process measurement and control scheme
  • Reliability
One manufacturer, Prozess Technologie, approaches process analysis with their Reveal optical spectroscopy analyzer. It is capable of operating continuously without ongoing operator interaction. Internal calibration software provides stability and reliability. The software suite for the instrument is compliant with numerous standards and a host of communication standards are supported to allow for easy integration into a process measurement and control system.

Pick up more detail about the Reveal unit below. Share your analytical process challenges with a product application specialist. Combining your process knowledge with their product expertise will produce effective solutions.



Friday, July 22, 2016

Measure Disinfectants, pH, Temperature, and ORP With One Instrument

water analyzer multi parameter pH, ORP,temperature,disinfectant
Krypton® Multi analyzer from Kuntze Instrument
Process control involves confirmation of the attainment of certain output conditions at various stages of the process or operation. This is necessary to assure that the input of the following step is at known conditions. These confirmation measurements can require substantial amounts of instrumentation, each with its own protocols, operating procedure, maintenance requirements, and other burdens of ownership and operation. Consolidating multiple measurement functions into a single instrument or unit of equipment can have advantages on many fronts.

The Kryton® Multi, from Kuntze Instruments, can measure up to five analytical parameters. The system includes analog inputs, PID control, analog outputs, relay outputs, alarms, automatic sensor cleaning, and a host of other useful features combined into a single compact unit. The system is provided complete with instrumentation, sensors, assembly and wiring. Common applications include monitoring of disinfection operations, process water, drinking water, and beverages. The Kryton®  is also available as a single parameter analyzer, designated model DES.

Share your liquid and process analytic challenges with a product specialist. Combining your process knowledge with their product application expertise will produce effective solutions.





Tuesday, July 12, 2016

Paths for Optimizing Chemical Industry Processes

Ingold pH probes for analytical processing
Ingold brand InPro pH probes
Courtesy Mettler Toledo
The success of an industrial process hinges upon simultaneously or continuously maintaining an array of variables within a comparatively narrow operating band. Operators rely heavily upon sensing and measuring equipment to provide critical information about process operation that cannot be gathered by the human senses.

There is a robust section of the measurement and control equipment industry devoted to analytical measurements for chemical processes. Mettler Toledo, with their Ingold brand of analytical instrumentation, has been a key player in the process analytical field for many years. Through continuous research and development, the company has innovated products that provide greater performance and operational benefits to their industrial process control customers.

The piece included below provides a useful overview of the company's analytical and measurement capabilities, with an emphasis on how the products are employed in various industries. Modern technology is incorporated to improve product life cycle performance and reduce maintenance burden.

See for yourself with a browse through the document included below. More information is available on products and applications from a specialist, with whom you should share your analytical process challenges. The most effective solutions will come from collaboration between process operators and analytical equipment specialists.



Thursday, July 7, 2016

When Magnetic Level Indicators May Be Best Choice for Tank Liquid Level Measurement

magnetic level gauge configured for sanitary installation
Magnetic level gauge configured for sanitary installation
Courtesy Jogler
Fluid process control operations often involve vessel or tank storage of liquids. Continuous and accurate indication of the liquid level within the tank is an essential data point for process control decision making and safety. Several methods and instrument types are available for tank level measurement, each with its own set of attributes that may be advantageous for a particular installation. Selection criteria for a tank liquid level indicator may include:
  • Direct or indirect measurement of level
  • Level measurement accuracy and reliability
  • Tank shape, regular or irregular
  • Media compatibility with measurement device
  • Requirements for maintenance or calibration
  • Compatibility with process temperature and pressure range
  • Local display and visibility
  • Level indication signal type and transmission
  • Level alarm switches or other indicators
The selection of a magnetic level indicator, also referred to as a magnetic level gauge, for the project will likely be based upon at least one of the instrument's strengths. Magnetic level gauges have a host of potentially positive features for level indication.
  • Continuous level measurement
  • Operable without electric power
  • Direct visual tank fluid level indication, regardless of tank shape or profile.
  • Wide range of operating temperature and pressure
  • Breakage resistant construction
  • Range of construction materials available to accommodate corrosive media
  • Measuring indicators, switches, and transmitters mounted externally, without contacting the medium being measured.
  • Low maintenance operation.
  • Readable level indication from greater distance than glass sight gauges.
  • Applicable to large fluid level ranges with a single instrument.
Magnetic level indicators have a strong position in the tank liquid level measurement field and should be considered as a candidate for fulfilling those application requirements. There are many options available to customize the level indicator for each specific application. I have included a technical data sheet from Jogler, a manufacturer of level instrumentation, for more detail. Share your application challenges with a sales engineer that specializes in level measurement. Combining your process knowledge with their product application expertise will yield positive solutions.


Monday, June 27, 2016

Humidity and Temperature Transmitters for Demanding Humidity Measurement

Vaisala Humidity sensors and transmitters for process measurement and control
HMT330 Series Humidity and Temperature Transmitters
Courtesy Vaisala
Humidity, the amount of water vapor in the atmosphere or a gas, can be an important measurable attribute of an industrial process. Many are aware of the measurement of relative humidity in HVAC applications and its impact on human comfort in occupied spaces, but the measurement of water vapor in air can be a required measuring point in many other processes that pose far greater challenge.

In addition to common wall or duct mounting applications, where the instrument is easily inserted or placed into the environment to be measured, there are applications that call for special adaptations to the instrument or sensing probe.
  • High pressure
  • Vacuum
  • High temperature
  • High humidity
  • Pressurized pipelines
  • Presence of chemical contaminants
Meeting the full range of industrial process control operations requires stable measurements and the choice of multiple configurations and options to customize the instrument to the process demands. Here are some features worth considering.
  • Multiple variants to match the basic process requirement
  • Full 0 to 100% humidity measurement range up to +180°C (+356°F)
  • PT 100 RTD for accurate temperature measurement
  • Pressure tolerance up to 100 bar
  • Superior sensor accuracy and stability
  • Graphic display and keypad for local operation
  • Multilingual user interface
  • Good chemical tolerance
  • Corrosion resistant housing
  • Delivered with multi-point NIST traceable calibration certificate
  • Analog outputs, RS232/485, WLAN/LAN
  • MODBUS protocol support (RTU/TCP)
  • Long term manufacturer warranty
While not all processes may require, or benefit from, the inclusion of all the listed features and capabilities, reviewing what is available and considering which features may provide better operability in your process can be beneficial. I have included a data sheet below that illustrates the HMT330 Series of humidity and temperature transmitters from Vaisala. Share your humidity measurement challenges with a product specialist. Combining your process knowledge with their product application expertise will produce solid solutions.



Friday, June 17, 2016

Magnetic Level Gauges Superior to Glass Level Indicators

Magnetic Level Gauge
Magnetic Level Gauge
(courtesy of Jogler)
Magnetic level gauges isolate of the process inside of a sealed piping column, thus eliminating the possibility of leaking seals and cloudy or broken site glass. Magnetic level gauges (gages) allow for easy cleaning access and a wide variety of mounting styles and process connections. They also provide improved visibility with highly visible flippers.

Magnetic level gauges are designed with a float in a sealed tube, embedded with permanent magnets. As process level changes, the float rises and falls, and the magnets in the float couple with an external indicator. The indicator is completely isolated from the process.

The following video provides a brief overview of Jogler level products. Jogger is a Baton Rouge, Louisiana manufacturer of high quality magnetic level gauges, magnetostrictive transmitters, direct-reading level gauges with armored shield, sight flow indicators, specific gravity analyzers, point level switches and other accessories. Jogler products are custom designed to meet customer specifications and manufactured to applicable ASME B31.1 and B31.3 code requirements to ensure reliable operation and maintenance free design.

Thursday, June 9, 2016

Video on Bubble Noise in Dissolved Oxygen Signals

stainless steel fermentation tanks in brewery
Modern Brewery
Process engineers and operators continually seek faster and more accurate means of measuring variables within the process. Greater currency and accuracy of information can lead to better control and decision making, with a positive impact on efficiency and safety.

Measurement of specific dissolved gases within a liquid plays an important part in many processes in the biopharmaceutical, food, and beverage industries. Mettler Toledo, through their Ingold brand, has developed a solution to a common problem associated with measuring dissolved oxygen. Provided below is a video which illustrates how bubbles can impact the sensor reading, plus Mettler Toledo's solution to the problem. There is also an application note provided below the video which further explains the problem and solution.

Share your process measurement and control challenges with product specialists. Combine your process experience with their product application expertise to devise the best solutions.




Wednesday, June 1, 2016

Pharmaceutical Industry Case Study: Extend Bioreactor Useful Life With Automation Refurbishing

bioreactor automation control system for pharmaceutical processing
Fermenter/Bioreactor Control System
Courtesy ILS Automation
Bioreactors can have their useful working life extended, even made more productive, through the replacement of the automation and control system. Modern measurement and control gear can provide utility that may not have been available at the time of original manufacture. With vessel, support structure, and piping in good condition, a system may be a viable candidate for refurbishing to bring about upgraded performance or avoid the purchase of an entire new system. ILS Automation is a specialist in the realm of refurbishing bioreactor systems.

The company has several drop-in replacement control units for smaller bioreactors, and also provides turn-key solutions for larger systems. The ILS expertise also extends into other industrial process control and automation fields in the biotechnology, chemical, oil and gas industries.

A bioreactor control system update case study is included below. More product, service, and capabilities information is available from Alliance Technical Sales.


Tuesday, May 17, 2016

Magnetostrictive Level Transmitter for Process Measurement & Control

Magnetostrictive liquid level transmitter for industrial process measurement and control
Magnetostrictive
Liquid Level
Transmitter
(Jogler)
Physical properties of certain materials can be applied using ingenuity and creativity to create useful appliances. Magnetostriction, a physical property of ferromagnetic materials, produces a change in shape or dimension in the subject material when it is magnetized. This basic principle is integrated into a liquid level transmitter by extending a sensing wire along the interior length of a tube immersed in a process tank or other vessel containing the liquid to be measured. The transmitter pulses the sensing wire with an electrical current, creating an electromagnetic field. A magnetic float, travelling along the outside of the sensing tube, rises and falls as the liquid level in the tank changes. As the float moves along the length of the sensing tube, it creates a torsional stress in the sensing wire, starting at the position of the float, which matches the level of liquid in the tank. A sensing element converts the torsional stress in the wire to an electrical pulse. The transmitter measures the time differential between the initial pulse it sent down the sensor wire and the pulse resulting from the torsional stress and then calculates the position of the float and the liquid level.

These devices are very accurate and operate on a standard 2-wire loop. There are numerous options and variants that allow configuration for each application.

More information is included in the data sheet below. Your best source for current product and application information is a product specialist. Combining your process knowledge with their application expertise will produce the best outcomes.



Wednesday, May 11, 2016

Temperature Sensors for Process Measurement - Thermocouple, RTD, Thermistor

straight tube thermocouple, RTD or thermistor for temperature measurement
Simple RTD, thermocouple, thermistor
straight tube assembly
Courtesy Smart Sensors, Inc.
This post explains the basic operation of the three most common temperature sensing elements - thermocouples, RTD's and thermistors.

A thermocouple is a temperature sensor producing a micro-voltage from a phenomena called the Seebeck Effect. In simple terms, when the junction of two different (dissimilar) metals varies in temperature from a second junction (called the reference junction), a voltage is produced. When the reference junction temperature is known and constant, the voltage produced by the sensing junction can be measured and a corresponding temperature derived.

Thermocouples are widely used for industrial and commercial temperate control because they are inexpensive, exhibit appropriate accuracy for many applications, have a fairly linear temperature-to-voltage output curve, come in many “types” (different metal alloys) for many different temperature ranges, and are easily interchangeable. They require no external power to work and can be used in continuous temperature measurement applications from -185 Deg. Celsius (Type T) up to 1700 Deg. Celsius (Type B).

Common application for thermocouples are industrial processes, the plastics industry, kilns, boilers, steel making, power generation, gas turbine exhaust and diesel engines, They also have many consumer uses such as temperature sensors in thermostats and flame sensors, and for consumer cooking and heating equipment.
wire wound RTD
Coil wound RTD element
(image courtesy of Wikipedia)

RTD’s (resistance temperature detectors), are temperature sensors that produce a measurable change in resistance as the temperature of the RTD sensing element changes. They are normally designed as a fine wire coiled around a bobbin (made of glass or ceramic), and inserted into a protective sheath. They can also be manufactured as a thin-film element with the pure metal deposited on a ceramic base much like a circuit board.

thin film rtd
Thin-film RTD element
(image courtesy of Wikipedia)
The RTD wire is usually a pure metal such as platinum, nickel or copper because these metals have a predictable change in resistance as their temperature changes. RTDs offer considerably higher accuracy and repeatability than thermocouples and can be used up to 600 Deg. Celsius. They are most often used in biomedical applications, semiconductor processing and industrial applications where higher accuracy is important. Because they are made of pure metals, they tend to more costly than thermocouples. RTDs do need to be supplied an excitation voltage from the control circuitry.

The third most common temperature sensor is the thermistor. Thermistors work in a similar fashion to RTDs, in that they are a resistance based device, but instead of using pure metal, thermistors use a very inexpensive polymer or ceramic material as the element. The practical application difference between thermistors and RTD’s is the resistance response curve of thermistors. It is very non-linear, making thermistors useful over a narrower temperature range than RTDs.

thermistor
Thermistor bead with wires
(image courtesy of Wikipedia)
Thermistors however are very inexpensive and have a very fast response. They also come in two varieties, positive temperature coefficient (PTC - resistance increases with increasing temperature), and negative temperature coefficient (NTC - resistance decreases with increasing temperature). Thermistors are used widely in monitoring temperature of circuit boards, digital thermostats, food processing, and consumer appliances.

Temperature sensors are available in an almost infinite number of assemblies and configurations to accommodate every conceivable application. Share your application with a product specialist and take advantage of their application knowledge and experience.