Showing posts with label industrial heat. Show all posts
Showing posts with label industrial heat. Show all posts

Sunday, February 18, 2018

New Silicone Heating Tapes For Industrial Heating Applications

flexible silicone rubber heat tape
Ultra-flexible silicone rubber heat tape easily wraps
smaller diameter pipes.
Image courtesy BriskHeat Corp.
There are many places throughout industrial and commercial installations where freeze protection or another reason for pipe heating exist. It is valuable to have a solution that can be applied quickly and easily to allow resources to remain focused on the larger mission of the organization.

BriskHeat has introduced their XtremeFLEX® line of silicone sheathed heat tape that combines plug and play installation ease with maximum flexibility and a built-in preset thermostat. The product can be installed with a bend radius of 1/4", allowing its use on small process lines of many types. The manufacturer provides a listing of some possible uses.
  • Viscosity and temperature control
  • Freeze protection
  • Integrally heated tools
  • Gas tubing
  • Valves
  • Laboratory heating
  • Plastic bending heat tape
  • External heating of dies and tools
  • Temporary heat
  • Hopper throat heater
  • Heat Tape for Pipes
More product information is provided in the brochure included below. Share your potential applications and heating challenges with an industrial heating specialist. Leverage your own process knowledge and experience with their product application expertise to develop an effective solution.


Wednesday, October 25, 2017

Freeze Protection for All Sorts of Commercial and Industrial Things

Freeze protection requirements are ubiquitous and take many
forms. Each has a best solution employing a specialized heater.
Keeping process or inventory liquids from freezing, or becoming extremely viscous, can be an important part of any commercial or industrial operation. Freeze damage to equipment, piping, or containers can result in a wide array of consequences, all of them likely to be negative.

Developing an overall plan for freeze protection can be advantageous to attacking each application on an independent basis.

  • Having a common vendor for all freeze protection equipment and supplies can help designers develop a knowledge base about how to meet application challenges with specific products, speeding implementation time. Service techs become familiar with applied products and methods, building their skills and efficiency at installing and maintaining applications throughout the facility.
  • Identify all locations where freeze protection is needed. Develop a baseline of the methods employed and equipment installed to meet the needs of each location. Good records form the basis for good maintenance and the ability to make decisions regarding the operation and performance of each system.
  • When selecting the products or methods to employ for freeze protection, consider the environment in which the hardware will be installed. Will it require protection from physical damage, chemical attack, or extreme weather. Is the installation space considered a hazardous zone, requiring special certifications for the heating equipment?
  • The availability and control of applied heat can also be important. Is there a need for the heating system to deliver highly variable amounts of heat across the range of possible operating scenarios, in order to avoid overheating the process or stored materials? How quickly will the system need to ramp up to the desired operating temperature or respond to changes in an operating process?
These questions, and probably others specifically related to your application, should be part of the consideration for freeze protection applications. Enlisting the cooperation of a process heat specialist can apply leverage to your own process knowledge and experience to develop an effective solution to each challenge.

Check this link for a copy of the Freeze Protection Planning Guide.

Thursday, October 5, 2017

Drum Heater Applications



It is common for bulk liquids to be delivered, contained, or dispensed from large pails or drums. At various times and locations during its dwell time in a drum, inventoried liquids might need protection from freezing, or maintenance of an elevated temperature for viscosity control or another reason. It can be impractical to provide a controlled environment in which to house one or more drums, pails, or other containers. A specialized heater provides an effective and economical solution that is easy to put in place as needed.

Silicone rubber drum heaters require only electric power from an extension cord to deliver controlled heat to plastic or metal drums. They can be put in place in minutes and operate unattended to provide controlled levels of heat through the container walls to the target liquid. The units are rugged and have a self-contained thermostat. Various sizes and capacities accommodate a broad range of industrial applications. Specialized custom units can be configured for specific applications.

The short video shows the ease with which these drum heaters can be applied. Share your liquid processing and analytical challenges with fluid processing specialists, leveraging your own knowledge and experience with their product application expertise to develop effective solutions.

Friday, July 28, 2017

Heated Impulse Lines on Pressure Gauges and Transmitters

self regulating heat trace cble
Successive cutaway view of self-regulating heat trace
cable showing various layers of material
Courtesy BriskHeat
Temperature of the environment surrounding process equipment and instruments can sometimes have a deleterious impact on its function. A common example is cold weather impact on the impulse lines connecting pressure gauges or transmitters to process piping in outdoor or unheated locations. While the process lines may be large, with sufficient mass flow and insulation to prevent freezing, this may not be the case for small diameter impulse lines. Liquid freezing in cold weather conditions can be a threat to process operation, depending on the type of liquid being used. A safeguard exists for impulse lines where the lines can be traced with a heat source, allowing for counteraction of the environmental conditions and maintenance of proper operation.

There are a number of ways to deliver heat to an impulse line. Recognize two essential goals, with the first being to prevent freezing or other changes to the fluid in the line that would impact the response or accuracy of the instrument reading. The second goal is related to the heat tracing itself. The delivered heat must not be great enough to impact the fluid in the impulse line and generate a false pressure reading. Optimally, delivering heat in a fashion that is limited to what is necessary to maintain the impulse line fluid in an ideal working state is best.

One example of heat tracing an impulse line is through the placement of a tube or small diameter pipe, located in close proximity to line, through which low pressure steam flows. Insulation is applied to the bundle and the steam line serves as a heat source. The tube transfers heat to the impulse line when steam flows. After the steam heats the impulse line, a steam trap accompanying the system collects condensate for return to the boiler. It is also conceivable that the steam line could ultimately vent to atmosphere, with no condensate return. There are a number of concerns that must be addressed in the design of the steam portion of this scenario, since it would be necessary to keep any condensate from freezing under all anticipated operating conditions, including process shutdown.

A second common solution for freeze protection of impulse lines is through the installation of electric heat tracing. Two-wire cable serves as protection against the cold. When powered, the heat from the cable keeps the line warm. Electric heat tracing is available in a broad range of physical configurations, including cables, tape, blankets, and other flexible and solid shapes. Control of the electric heat system can be accomplished with an external controller and sensor, or a self-regulating heat trace cable can be used. As with a steam heating system, there are some specific considerations for electric heat tracing. Thermal insulation is still considered a best practice. Electric power must be delivered to the installation, and a means of monitoring heat trace performance for faults or failure should be included in the design.

Share your heat tracing requirements and challenges for process piping and other industrial applications with a product specialist. There are many options and product variants from which to choose. A consultation can help direct you to the best solution.

Wednesday, March 22, 2017

Properly Applying Flexible Heat Tape




Heat tape, with its flexibility, provides a good means of delivering heat to a wide range of process applications. It can be applied to pipes, vessels, or other objects that need to be heated for any number of reasons. The range of available product materials and watt densities assures that there is a heat tape configuration for almost every application. This video shows how to properly apply and install heat tape to get the best performance and maintain safe operating conditions.

Share your process heating requirements of all types with an industrial heating specialist, combining your process knowledge and experience with their product application expertise to develop effective solutions.

Friday, March 10, 2017

Silicone Rubber Heating Blankets - Special Delivery for Industrial Heating Applications

silicone rubber heating blanket industrial heater
Silicone Rubber Heating Blanket
One of countless shapes and sizes
Courtesy Briskheat
Electric heaters for industrial and commercial applications are available in an almost dizzying range of types, materials, and forms. One of those is the silicone rubber heater.

Stock shapes and sizes are available from many manufacturers, but one distinct advantage of silicone rubber heaters is their flexibility. The resistance heater wires are encased in a silicone rubber sheet, providing the ability to wrap the assembly around an object or manipulate it into a close fit with the target of a heating application. The silicone rubber encasement also provides a high level of protection for the heater wires from impact, moisture, and some chemicals.

The watt density of the heaters can be specified to provide a good match between the delivery of heat and the need for it. Custom shapes and configurations can be manufactured to order, and on board or remote controllers provided. Pressure sensitive adhesive is a common option that facilitates the installation of the heater assembly to a part or vessel.

The maximum application temperature is in the range of +450°F (+232°). These heaters are a useful selection option for a large range of operations demanding heat to be applied directly to a surface, object, tank, drum, or other vessel. Share your industrial heating requirements with product specialists for the best match up between heater technology and your application.