The Mettler Toledo InPro X1 HLS is a Digital, Food-safe, In-line pH Sensor

InPro X1 HLS is a Digital, Food-safe, In-line pH Sensor

pH measurement is essential in the food and beverage industry to ensure food safety, maintain product quality and consistency, optimize taste and flavor, comply with regulations, control chemical reactions, and preserve nutrient content.


The Mettler Toledo InPro X1 HLS pH sensor is designed specifically for Food & Beverage applications. The InPro X1 HLS construction includes high-quality materials that make it highly durable and more applicable than a glass pH sensor. 


The InPro X1 HLS:


  • Resists Clean-in-Place Processes - The InPro X1 HLS is the premier food-safe, in-line pH sensor, maintaining accuracy and longevity without compromising its ability to withstand cleaning processes.
  • Improves Product Yield and Quality - Accurate in-line pH measurement enables absolute process control, resulting in enhanced product quality, increased yield, and reduced batch times.
  • Meets All Major Food Regulations - The InPro X1 HLS features a hygienic design, using materials chosen explicitly for food and beverage contact applications, and holds certifications such as 3A, EHEDG, EC1935/2004, ATEX, and FM.
  • Eliminates Risk of Glass Contamination - The unbreakable X-Chip pH-sensing technology allows for in-line pH measurement without the hazard of glass fragment contamination.


Why is pH Measurement Critical for the Food and Beverage Processing Industry?


  • Food safety and shelf life: pH levels can affect the growth of microorganisms, such as bacteria, yeast, and mold. A lower pH (higher acidity) usually inhibits the growth of harmful organisms, improving food safety and extending shelf life. Measuring and controlling pH can help prevent spoilage and ensure the safety of products.
  • Product quality and consistency: pH significantly impacts the taste, texture, and appearance of food and beverages. It can influence enzymatic reactions, protein denaturation, and Maillard browning reactions. Manufacturers can maintain product quality and consistency across different batches by controlling pH.
  • Flavor and taste: pH affects the taste profile of food and beverages. For example, acidic products (lower pH) have a sour taste, while basic products (higher pH) tend to taste bitter. Balancing pH is essential to achieving the desired flavor profile and consumer acceptance.
  • Regulatory compliance: Food and beverage industries must adhere to strict regulations and guidelines, which often include specific pH requirements. Meeting these regulations ensures that products are safe for consumption and reduces the risk of product recalls.
  • Chemical reactions: pH influences the rate and extent of chemical reactions in food and beverage products, such as fermentation, emulsification, and gelation. Manufacturers can optimize these reactions by monitoring and controlling pH to achieve the desired product characteristics.
  • Nutrient availability and stability: pH levels can influence the stability and availability of nutrients, such as vitamins and minerals, in food and beverages. Controlling pH can help maintain nutrient content and improve the nutritional value of products.



Alliance Technical Sales 
630-321-9646



Easy Chloramination Monitoring

Easy Chloramination Monitoring

A chloramination analyzer is a device used to measure the concentration of chloramines in water treatment systems, a type of disinfectant. Chloramines are a mixture of chlorine and ammonia. They are an alternative to chlorine in water treatment because they are more stable and have a more prolonged residual effect.

Chloramination analyzers use various techniques to measure the concentration of chloramines in the water, including colorimetric methods, amperometric methods, and ultraviolet-visible spectrophotometry. These methods measure the volume of chloramines in a water sample and provide a numerical reading of the concentration.

Chloramination analyzers are typically used in water treatment plants to monitor the effectiveness of the chloramination process. They are also used to ensure that the concentration of chloramines in the treated water meets the required levels for safe drinking water. Additionally, they monitor the effectiveness of the chloramination process and ensure that the concentration of chloramines in the treated water is at the correct level for safe drinking water.

In summary, Chloramination Analyzer is a device used to measure the concentration of Chloramines in water treatment systems. Chloramines are used as an alternative to chlorine in water treatment because they are more stable and have a more prolonged residual effect. Chloramination analyzers are typically used in water treatment plants to monitor the effectiveness of the chloramination process and ensure that the concentration of chloramines in the treated water meets the required levels for safe drinking water.

The HF scientific MCX Monochloramine Analyzer features a unique pump design for more straightforward maintenance and accurate readings every 15 minutes. You can enjoy continuous monitoring and smoother day-to-day operations when you have a reliable, easy-to-use monochloramine analyzer in your facility.

For more information about the MCX Monochloramine Analyzer, contact Alliance Technical Sales. Call them at 630-321-9646 or visit them at https://alliancets.com.

Magnetic Level Gauges in Process Control

Magnetic Level Gauges in Process Control

A magnetic level gauge is a type of instrument that is used to measure the level of a liquid in a tank or process vessel. It works by using a magnetically coupled float that moves up and down along a calibrated vertical scale as the level of the liquid changes. The position of the float is indicated by a pointer or display that is visible to the operator.

In process control applications, the magnetic level gauge is used to monitor and control the level of liquids in tanks, vessels, and other containers. This is important for a number of reasons, including safety, efficiency, and product quality. For example, if the level of a liquid is too low, it may indicate a leak or a problem with the process. On the other hand, if the level is too high, it may indicate that the process is running too quickly or that there is a risk of overflow.

The magnetic level gauge is typically mounted on the outside of the tank or vessel, which allows the operator to easily monitor the level of the liquid without having to open the vessel or disrupt the process. Some gauges may also be equipped with alarms or automatic control systems that can shut down the process if the liquid level becomes too high or too low.

Overall, the magnetic level gauge is an important tool in process control, as it helps to ensure the safe and efficient operation of industrial processes that involve the handling of liquids.

For more information, contact Alliance Technical Sales. Call 630-321-9646 or visit https://alliancets.com.

Process Analytics: Measuring pH, Dissolved Oxygen, and Conductivity

Process Analytics: Measuring pH, Dissolved Oxygen, and Conductivity

pH, dissolved oxygen, and conductivity are important parameters to measure in industrial processes because they can provide valuable information about the products' quality and safety. By measuring these parameters, industrial processes can ensure that they are operating within safe and optimal ranges, which can improve the quality and efficiency of the products.


pH


pH is a measure of the acidity or basicity of a solution, and it can significantly impact the behavior of chemicals in a process. 


There are several ways to measure pH in industrial processes, including using a pH meter, pH test strips, and indicator solutions. A pH meter is a commonly used instrument that measures the pH of a solution by using a probe to measure the electrical potential difference between the solution and a reference electrode. pH test strips are also commonly used in industrial processes, as they are quick and easy to use and provide a general indication of the pH of a solution. 


Dissolved Oxygen


Dissolved oxygen is vital because many industrial processes involve biological organisms that require oxygen to survive and function properly. 


There are several ways to measure dissolved oxygen in industrial processes, but some of the most common methods include the following:


  • Electrochemical sensors: These sensors use an electrode to measure dissolved oxygen concentration in a solution.
  • Optical sensors: These sensors use light to measure the amount of dissolved oxygen in a solution.
  • Membrane-based sensors: These sensors use a thin membrane to separate the sample being measured from the oxygen-sensitive material, allowing for accurate dissolved oxygen levels.

Conductivity


Conductivity is a measure of the ability of a solution to conduct electricity. It can provide information about the concentration of ions in the solution, which can be helpful in various applications. 


Conductivity in industrial processes is typically measured using a conductivity meter. This device uses electrodes to pass an electrical current through a substance sample and measures the substance's resistance to the flow of electricity. The resistance converts into a conductivity reading, typically reported in units of siemens per meter (S/m).


It's worth noting that the most appropriate method for measuring dissolved oxygen, conductivity and pH in industrial processes will depend on the application's specific requirements. It's always a good idea to consult with an expert in the field to determine the best method for your particular needs.


METTLER TOLEDO provides analytical transmitters for a wide range of analytics, including pH/ORP, oxygen, dissolved carbon dioxide and conductivity or resistivity. These analytical transmitters are the component within a measurement system that communicates displayed measurements to a user or higher level control system.  METTLER TOLEDO high-performance analytical transmitters offer compatibility with traditional analog sensors and digital sensors with METTLER TOLEDO's Intelligent Sensor Management (ISM).


Discuss your process analytics requirements with professional, skilled expert engineers. Alliance Technical Sales is available to assist in the application and specification of sensors, transmitters, and controllers for any industrial process. Call them at 630-321-9646 or visit their website at https://alliancets.com.