Showing posts with label METTLER TOLEDO Process Analytics. Show all posts
Showing posts with label METTLER TOLEDO Process Analytics. Show all posts

How ISM™ Digital Technology Enhances Quality in Pharmaceutical and Chemical Industries

ISM™ Digital Technology Enhances Quality in Pharmaceutical and Chemical Industries

Intelligent Sensor Management (ISM™) is a digital technology enhancing process analytical measurements. ISM systems, applied in monitoring pH, dissolved oxygen, and other critical parameters, assist pharmaceutical and chemical companies globally in ensuring process consistency and product quality. This video underlines the primary advantages of ISM digital sensors and ISM Core™ software.

Learn More About ISM from This Mettler Toledo Video


Alliance Technical Sales
https://alliancets.com
630-321-9646

The Role of TDL Analyzers in Ensuring Safety and Efficiency in Industrial Processes

The Role of TDL Analyzers in Ensuring Safety and Efficiency in Industrial Processes

A Tunable Diode Laser Analyzer (TDLA) is an analytical instrument that employs the technique of tunable diode laser absorption spectroscopy (TDLAS) for the measurement of concentration or moisture content in a process gas mixture. It works based on the principle that molecules absorb light at specific frequencies, and the amount of light absorbed is proportional to the concentration of the molecules.

How TDLA Works:


  • A diode laser emits light at a specific frequency towards the sample gas.
  • The sample gas absorbs some of the light depending on the concentration of the specific molecules.
  • The remaining light passes through the gas and reaches a detector on the other side.
  • The concentration of the gas can be determined by analyzing the intensity of the received light and comparing it to the emitted light.

Advantages of TDLA:

  1. Non-contact Measurement: TDLAs do not come in direct contact with the gas being analyzed, which is beneficial when the gas might be corrosive or at high temperatures.
  2. Fast Response: They provide almost real-time measurement, which is crucial in many industrial applications.
  3. Low Maintenance: They require minimal maintenance due to the lack of moving parts and direct contact with the sample.
  4. High Sensitivity and Precision: TDLAs can detect even low concentrations of gases with high accuracy.

Industrial Applications of TDLA:

  1. Power Plants: For measuring oxygen, carbon monoxide, and ammonia concentrations for combustion control and emissions monitoring.
  2. Petrochemical: In refineries, TDLAs monitor the concentration of different gases in processes such as reforming or ethylene production.
  3. Steel Industry: For measuring oxygen concentration in blast furnaces or carbon monoxide in coke ovens.
  4. Cement Industry: To monitor the concentration of gases like carbon monoxide or oxygen in kilns.
  5. Chemical Production: TDLAs monitor reactant and product concentrations in real time to ensure the optimal production rate.
  6. Natural Gas Processing: TDLAs measure moisture content, crucial in processing and transporting natural gas.
  7. Environmental Monitoring: TDLAs can be employed in stack monitoring systems to measure concentrations of pollutants.
METTLER TOLEDO's TDL analyzers stand out for their rapid and precise measurement capabilities. Notably, they offer minimal maintenance needs and remain unaffected by background gases, guaranteeing consistent results. The GPro 500 series, a notable line of tunable diode laser spectrometers from their collection, is engineered with diverse process adaptations, ensuring a tailored fit for your specific process needs and measurement criteria, underlining METTLER TOLEDO's commitment to versatility and precision.

In summary, Tunable Diode Laser Analyzers are sophisticated devices offering precise, fast, and reliable gas concentration measurements in various industrial settings. Their non-intrusive nature and low maintenance make them especially attractive for harsh industrial conditions.

Alliance Technical Sales, headquartered in Clarendon Hills, Illinois, can help you specify and apply Tunable Diode Laser Analyzers. Contact them at 630-321-9646 or visit their website at https://alliancets.com.

Process Analytics: Measuring and Controlling Vital Parameters in Industrial Applications

Process Analytics

Process analytics is fundamental to many industrial applications, particularly in water treatment, chemical processing, food and beverage production, and pharmaceutical manufacturing. These operations often depend heavily on precisely monitoring and controlling specific process parameters, such as pH, oxidation-reduction potential (ORP), dissolved and gaseous oxygen, dissolved CO2, ozone, conductivity, and turbidity. Understanding these parameters and how they can be effectively measured and regulated is critical to maintaining optimal process conditions, ensuring product quality, and complying with environmental and safety regulations.

What is Process Analytics?


Process analytics is the systematic analysis of various industrial processes to optimize performance and efficiency. It involves collecting, processing, and interpreting data to monitor process performance, pinpoint issues, make informed decisions, and implement operational improvements. The specific parameters monitored will vary depending on the industry and process in question, but they typically relate to the process medium's chemical, physical, and biological characteristics.

Understanding Key Parameters

pH

pH is a critical parameter in many industrial processes as it measures the acidity or alkalinity of a solution. It is essential in chemical reactions, biological processes, and corrosion control. Process analytics involves continuously monitoring pH to ensure it stays within specified limits. pH sensors, typically comprising a reference electrode and a pH-sensitive glass electrode, are used to measure this parameter.

Oxidation-Reduction Potential (ORP)

ORP measures the tendency of a solution to either gain or lose electrons, essentially quantifying its oxidizing or reducing potential. This parameter is critical in chemical reaction processes like wastewater treatment and disinfection. ORP sensors, similar to pH sensors, utilize a reference electrode and a sensing electrode to provide a voltage output proportional to the solution's ORP.

Dissolved and Gaseous Oxygen

A process's dissolved and gaseous oxygen concentration can significantly impact chemical reactions, microbial activity, and oxidation processes. Oxygen sensors, which can be optical or electrochemical, measure the oxygen present. The sensors apply in various applications, including fermentation, water treatment, and combustion control.

Dissolved CO2

In processes like fermentation, brewing, and carbonation, the concentration of dissolved CO2 is a critical process parameter. Too much or too little can dramatically affect product quality and process efficiency. Infrared absorption or chemical sensing methods are often used to measure dissolved CO2 levels.

Ozone

Ozone is a powerful oxidizing agent used in water treatment and bleaching processes. Concentration needs close control to ensure effective treatment while minimizing the risk of harmful byproducts. Ozone sensors usually work by measuring the absorption of UV light, a characteristic property of ozone.

Conductivity

Conductivity measures a solution's ability to conduct electricity related to the concentration of ions in the solution. It's a crucial parameter in processes involving aqueous solutions, such as water treatment and chemical production. Conductivity sensors typically operate based on the principle of Ohm's law.

Turbidity

Turbidity measures the cloudiness or haziness of a fluid caused by suspended solids. It is a crucial parameter in water and wastewater treatment, as it can indicate the effectiveness of filtration processes and the presence of pathogens. Turbidity sensors usually work by measuring the scattering and absorption of light.

The Role of Process Analytics


Process analytics plays a critical role in modern industrial operations. By continuously monitoring these parameters and controlling them within defined limits, operators can maintain optimal process conditions, maximize efficiency, and ensure the quality and consistency of their products. Furthermore, data from process analytics can be used for predictive maintenance, helping to prevent equipment failure and reduce downtime.

In summary, process analytics provides invaluable insights into industrial operations, offering real-time visibility and control over critical process parameters. As technology advances, process analytics capabilities will expand further, bringing even more significant benefits to a wide range of industries.

Alliance Technical Sales, headquartered in Clarendon Hills, Illinois, are experts in evaluating, specifying, and applying process analytics instrumentation across many industries. Contact them at 630-321-9646 or visit their website at https://alliancets.com.

Process Analytics: Measuring pH, Dissolved Oxygen, and Conductivity

Process Analytics: Measuring pH, Dissolved Oxygen, and Conductivity

pH, dissolved oxygen, and conductivity are important parameters to measure in industrial processes because they can provide valuable information about the products' quality and safety. By measuring these parameters, industrial processes can ensure that they are operating within safe and optimal ranges, which can improve the quality and efficiency of the products.


pH


pH is a measure of the acidity or basicity of a solution, and it can significantly impact the behavior of chemicals in a process. 


There are several ways to measure pH in industrial processes, including using a pH meter, pH test strips, and indicator solutions. A pH meter is a commonly used instrument that measures the pH of a solution by using a probe to measure the electrical potential difference between the solution and a reference electrode. pH test strips are also commonly used in industrial processes, as they are quick and easy to use and provide a general indication of the pH of a solution. 


Dissolved Oxygen


Dissolved oxygen is vital because many industrial processes involve biological organisms that require oxygen to survive and function properly. 


There are several ways to measure dissolved oxygen in industrial processes, but some of the most common methods include the following:


  • Electrochemical sensors: These sensors use an electrode to measure dissolved oxygen concentration in a solution.
  • Optical sensors: These sensors use light to measure the amount of dissolved oxygen in a solution.
  • Membrane-based sensors: These sensors use a thin membrane to separate the sample being measured from the oxygen-sensitive material, allowing for accurate dissolved oxygen levels.

Conductivity


Conductivity is a measure of the ability of a solution to conduct electricity. It can provide information about the concentration of ions in the solution, which can be helpful in various applications. 


Conductivity in industrial processes is typically measured using a conductivity meter. This device uses electrodes to pass an electrical current through a substance sample and measures the substance's resistance to the flow of electricity. The resistance converts into a conductivity reading, typically reported in units of siemens per meter (S/m).


It's worth noting that the most appropriate method for measuring dissolved oxygen, conductivity and pH in industrial processes will depend on the application's specific requirements. It's always a good idea to consult with an expert in the field to determine the best method for your particular needs.


METTLER TOLEDO provides analytical transmitters for a wide range of analytics, including pH/ORP, oxygen, dissolved carbon dioxide and conductivity or resistivity. These analytical transmitters are the component within a measurement system that communicates displayed measurements to a user or higher level control system.  METTLER TOLEDO high-performance analytical transmitters offer compatibility with traditional analog sensors and digital sensors with METTLER TOLEDO's Intelligent Sensor Management (ISM).


Discuss your process analytics requirements with professional, skilled expert engineers. Alliance Technical Sales is available to assist in the application and specification of sensors, transmitters, and controllers for any industrial process. Call them at 630-321-9646 or visit their website at https://alliancets.com.





Download the 2022-23 Mettler Toledo Process Analytics Catalog

Download the 2022-23 Mettler Toledo Process Analytics Catalog

Mettler Toledo Process Analytics, which comprises the well-known brands Thornton and Ingold, has released its product catalog for 2022-23. 

Ingold has an extensive history of providing creative, high-quality solutions for complex process analytics applications. Their products include measuring devices for pH/ORP, dissolved oxygen (DO), dissolved carbon dioxide (CO2), conductivity, and turbidity. 

Thornton is the global leader in ultrapure and pure water analysis. Their products include analytical equipment and sensors for measuring resistivity, conductivity, total organic carbon (TOC), bioburden, pH, dissolved oxygen (DO), salt, silica, and ozone. 

What Is Mettler Toledo Intelligent Sensor Management (ISM)?

Mettler Toledo Process Analytics Intelligent Sensor Management (ISM) is an innovative digital technology for analytical process parameters that combines many features into a unique solution. The foundation of the technology is built from a microprocessor embedded in all ISM sensors. This allows a wealth of valuable features that analog sensors cannot compete with, including a robust digital signal fast error-free measurement, point startup, and advanced diagnostics that clearly inform operators when calibration maintenance or replacement will be required. 

The critical diagnostics tool in ISM is the dynamic lifetime indicator (DLI). The DLI provides technicians with a clear indication of how much the exposure to a process has altered a sensor's condition. In the case of ph sensors by continuously analyzing the process conditions and other factors. The DLI constantly calculates how many days are remaining in the reliable lifetime of the sensor. There is no estimating based on a percentage of remaining life. You receive a precise number of days of life remaining, making it easy to plan maintenance and replacement. If process conditions become more or less harsh, the DLI rapidly responds appropriately. In addition the DLI actually adapts to process conditions to ensure diagnostics are always reliable.

Another important feature of ISM technology is "plug and measure" when connected to an ISM transmitter. The pre-calibrated sensor is instantly recognized and the transmitter configures itself appropriately without any operator intervention. When an exchange of sensor is needed this plug and measure functionality means a pre-calibrated sensor can be installed and be ready to measure in under a minute. This substantially reduces the amount of time that maintenance staff need to spend at measurement points. With its highly informative diagnostics that adapt rapidly to process conditions and its robust digital signal, ISM offers efficiencies in maintenance planning, plant safety and productivity while also reducing production costs.

For more information, contact:
Alliance Technical Sales
630-321-9646
https://alliancets.com

3 Reasons to Switch to ISM pH Sensors For Bioprocessing

3 Reasons to Switch to ISM pH Sensors For Bioprocessing


Intelligent Sensor Management (ISM) is a digital technology that directly incorporates a microprocessor into sensors, enabling analog to digital signal conversion for greater accuracy and interference-free measurements, plus onboard storing of calibration data predictive diagnostics.


There are three proven reasons to switch to Mettler Toledo ISM pH sensors from the competition. See the proof here.


Alliance Technical Sales

630-321-9646

https://alliancets.com

The Mettler Toledo Process Analytics 2850Si Silica Analyzer

2850Si Silica Analyzer

Reliable On-Line Silica and Phosphate Measurement for Power Plant Chemistry and Pure Water Treatment

Do More with Less - Small Footprint, Greater Functionality

Sometimes bigger is better, but when space is limited, such as parking in the city, being more compact can benefit. A compact car can offer the same basic functionality of getting you from A to B, but unlike the cargo van, it fits where you need it to, and it can help you gain valuable external space that can be used for different assets.  Similarly, METTLER TOLEDO Thornton's compact 2850Si silica analyzer was engineered to use space efficiently, simplifying power plant upgrades and design. The 2850Si offers greater three-in-one functionality in a smaller package to increase productivity. The 2850Si silica analyzer delivers silica and phosphate analysis in a compact and robust design for maximum operational flexibility while 3-in-1 multi-stream silica and phosphate capabilities allow you to do more than ever before with a single analyzer.

Achieve Low Total Cost of Ownership

Mettler Toledo Process Analytics 2850Si
Using 75% less reagents, a single 2850Si silica analyzer does twice the monitoring with sub-ppb silica and ppm phosphate analysis for power plant chemistry, reducing overall reagent consumption and operating costs.

Eliminate Complexity with Intuitive UI 

The 2850Si silica analyzer has a built-in M800 Transmitter. The intuitive user interface guides you through quick setup and allows you to create shortcuts. Easy configuration helps meet specific display needs and simplifies training and operation.

Simplify Your Maintenance Strategy 

Monitoring of reagent usage and tube/filter status with Intelligent Sensor Management (ISM®) enables proactive inventory and service planning. Simplify maintenance further by using METTLER TOLEDO expert services to ensure optimal performance throughout the life of the analyzer.

Optimize Productivity with Integrated Phosphate Monitoring

Boilers and steam generators use hundreds of pipes to maximize efficient heat transfer for powering turbines. Phosphate treatment is often used to maintain high performance drum-type boilers, thus making it critical to implement a phosphate analyzer, while a silica analyzer is critical to ensure high quality steam exits the boiler. The 2850Si on-line silica analyzer combines the benefits of a silica meter and a phosphate analyzer. It delivers reliable ppb silica and ppm phosphate measurements, without the need of a separate PO4 analyzer, for optimized productivity.

Ensure Water Purity with On-line Silica Monitoring

On-line silica analyzers provide a critical measurement for ensuring water purity in power cycle chemistry and in ultrapure water monitoring. The 2850Si analyzer for silica helps optimize ion exchange production and minimize silica deposition on turbines. This on-line silica meter allows you to measure at sub-ppb levels for early detection of silica breakthrough of polisher anion resin, so that contaminated water can be diverted before it reaches critical areas.

Less Downtime Required for Analyzer Maintenance

Analyzers for silica play an important role in water quality assurance and the protection of plant equipment from silica build-up. Ensuring analyzer uptime requires a silica meter with intelligent diagnostics to eliminate the inconvenience and costs associated with unexpected maintenance. The 2850Si silica analyzer with integrated phosphate analyzer tracks reagent usage and tube/filter replacement status, allowing you to plan for maintenance to maximize uptime. Gain even greater uptime assurance with added IP55 enclosure protection of the standard IP66 rated electronic components.

For more information about METTLER TOLEDO Process Analytics products in Illinois, Indiana, Iowa, and Wisconsin call Alliance Technical Sales at 630-321-9646 or visit their website at https://alliancets.com.


New 2020 Mettler Toledo Process Analytics Catalog

Mettler Toledo Process Analytics, which includes the well-known Thornton and Ingold brands, has published their 2020 product catalog.

Ingold has a long track record of innovative high-quality solutions for demanding process analytics applications. Their products include systems for the measurement parameters of pH/ORP, dissolved oxygen (DO), dissolved CO2, conductivity and turbidity.

Thornton is the market leader in critical ultrapure and pure water analytics, where accuracy and reliability are essential. Their products include analytical instruments and sensors for the measurement of resistivity, conductivity, TOC, bioburden, pH, dissolved oxygen (DO), sodium, silica and ozone.

For more information, and to download the 2020 MT Process Analytics catalog, visit this Alliance Technical Sales webpage.

Alliance Technical Sales, Inc.
630-321-9646
https://alliancets.com

Continuous, Real-time Measurement for Full Visibility of Total Organic Carbon (TOC) in Pure and Ultra-Pure Water Systems

At-line batch method of monitoring total organic carbon (TOC), which takes measurements at set intervals, is the equivalent of taking snapshots of information. The gaps between measurement intervals could easily miss a critical event, whereas on-line, continuous TOC monitoring done by the Mettler Toledo 6000TOCi total organic carbon analyzer captures any-and-all excursions in real-time.

Monitoring total organic carbon levels is critical to meeting internal water quality specifications and global pharmacopeia regulatory requirements. Missing an increase in TOC levels can put you at risk of contaminating your water system, which in turn could affect production and potentially lead to an out-of-spec event or product recall.

Most TOC analyzers on the market offer at-line batch or non-continuous methods of total organic carbon measurement, which limits TOC data collection to every 6-12 minutes. But much can happen in six minutes.  When you are subject to an audit or have a quality problem, how are you sure that you did not experience a problematic TOC excursion between batch samples?

The 6000TOCi analyzer’s true continuous measurement along with its comprehensive record keeping and advanced diagnostics provide audit-ready TOC compliance and complete control of your water system.


Alliance Technical Sales
https://alliancets.com
630-321-9646

Calibration of the Mettler Toledo InPro 3250 Sensor and M400 Transmitter


The Mettler Toledo Process Analytics InPro 3250 is a pre-pressurized liquid-electrolyte pH probe with temperature sensor. The InPro 3250 are designed for an extensive range of applications in the biotechnology, pharmaceutical and chemical process industries.

The Mettler Toledo M400 is a 4-wire transmitter with multi-parameter and ISM capabilities.

This video demonstrates the process of calibrating an analog InPro 3250 pH sensor connected to an M400 transmitter.

Contact Alliance Technical Sales for all your Mettler Toledo Process Analytics products. Call them at 630-321-9646 or visit them at https://alliancets.com.

Validating Water Cycle pH Requirements Using Conductivity and Calculated pH


In thermal power plants, pH measurement and control in the water steam cycle are critical to minimizing corrosion. Cycle chemistry guidelines specifically target narrow pH ranges.

However, in high purity water and steam, there are not enough ions in the water to generate a pH response, causing the pH reading to be unstable. Fortunately, conductivity has a direct relationship with pH when the sample contains only pure water with the typical alkaline treatments, such as ammonia and amines. In fact, cycle chemistry in many plants relies primarily on the related specific conductivity values. However, correction for minor contaminants by measuring the cation conductivity of the sample is needed to provide accurate results. The specific and the cation conductivity values are used in an industry accepted calculation that provides the highest accurate conversion to pH. Under normal operating conditions, this calculation provides more accurate and reliable results than pH electrodes can provide, for two reasons:
  1. Conductivity is linear, with concentration which provides much higher resolution than pH sensors all of which give nonlinear response to concentration.
  2. Conductivity sensors can be directly calibrated with minimal introduction of error. 
All pH reference electrodes have a variable junction or diaphragm potential that can change between buffer calibration and process measurement, introducing some uncertainty to subsequent measurements.

This makes calculated pH based on conductivity significantly more accurate. However, with major contamination, such as when a condensate exchange polisher's resin is exhausted, and an acid leak occurs, the pH would drop below 7, which is outside the ideal range for using calculated pH and would generate errors. Thus, to avoid contamination, it is recommended that both traditional pH measurement, and calculated pH based on conductivity, be used for optimal pH control.

METTLER TOLEDO Thornton's M800 multi-parameter transmitter can provide traditional pH measurement, calculated pH, as well as specific and cation conductivity to ensure accurate and reliable pH control. The M800 even has a built-in alarm to alert you if the pH measurement deviates from the calculated pH measurement for extra security and peace of mind.

For more infomration about METTLER TOLEDO Process Analytics products, contact Alliance Technical Sales by calling 630-321-9646 or by visiting https://alliancets.com.

The Mettler Toledo GPro® 500 Series of Tunable Diode Lasers

Tunable Diode Lasers


Tunable Diode Lasers (TDLs) use a measurement technology called absorption spectroscopy: they output a beam of laser light at the same frequency that the gas to be measured absorbs light. The TDL analyzes the light after it has passed through the gas stream and calculates the quantity of the target gas in the stream. The use of TDL sensors is becoming more and more common in industrial processes.

Mettler Toledo manufactures the GPro® 500 TDL Series of Tunable Diode Laser designed for the toughest gas measurements. These analyzers are known to handle some of the most demanding process applications, particularly where accuracy and fast response is crucial.

Using a modular design, the GPro® 500 tunable diode laser gas analyzer allows you to select the process adaption that fits your application, and match it with the parameter that you need to measure. We offer sensors that measure  a variety of gases including Carbon Dioxide (CO₂), Carbon Monoxide (CO), Hydrogen Chloride (HCl), Hydrogen Sulfide (H₂S), Moisture, Ammonia (NH₃), Methane (CH₄) and Oxygen (O₂).

GPro® 500 Tunable Diode Laser - Eliminate Alignment

Most TDLs are comprised of two parts: the laser source unit and a receiving/analyzing unit. These parts must be installed directly opposite each other, which is not always easy and misaligned can often occur. METTLER TOLEDO's GPro® 500 Series solves this by combining both parts in a single unit. A probe attached to the GPro® sensor protrudes into the gas stream. A three-sided mirror at the end of the probe directs the beam back through the probe to the receiver, so alignment is always perfect.

GPro® 500 Tunable Diode Laser - Minimal Maintenance

GPro® 500The GPro® does not require "maintenance intensive" extractive and conditioning systems. This means that you receive consistent performance from your tunable diode laser gas analyzer without the downtime and cost associated with these traditional systems. You achieve reliable uptime, critical in safety applications, at a reduced cost of ownership.

For more information about the Mettler Toledo GPro® 500 Tunable Diode Laser, contact Alliance Technical Sales.
Phone: 630-321-9646
Web: https://alliancets.com

Inline Dissolved Oxygen Sensor Designed for Breweries

InPro6970i for brewing
InPro6970i for brewing
Oxygen in beer bottles or cans is bad. It affects the flavor and shortens shelf life, so breweries do their best to prevent oxygen getting into beer  at the filling line.  The Mettler Toledo Process Analytics InPro6970i is an inline dissolved oxygen sensor designed specifically for the needs of the brewery industry. It can measure oxygen in beer at levels of only a few parts per billion.

The sensor is inserted in the pipe at the start of the filling line, and provides real-time measurements on the oxygen content of the beer.  If the oxygen level is too high, the flow of beer is stopped to prevent the out of specification product continuing down the line.

Unlike most dissolved oxygen sensors available, the InPro6970i uses a clever optical technique for measuring oxygen. At the tip of the sensor there's a layer of molecules that absorb and emit light. These molecules are sensitive to oxygen which alters how the molecules behave. The greater the quantity of oxygen, the greater the changes in their behavior. The sensor very accurately measures these changes and sends the signal to the transmitter.  This technique is extremely fast and accurate at measuring changes in beer oxygen level, which is why it is favored by breweries. But that is not the only requirement breweries demand.  Sensors must be rugged, easy to use, and simple to maintain.The InPro6970i scores highly in all these areas. The sensor's stainless steel body is extremely robust, the unit is easily and quickly installed, and the only maintenance required is the periodic exchange of the oxygen sensitive element, the OptoCap. Intelligent Sensor Management, or ISM, is a feature of the InPro6970i that offers significant benefits to breweries. The sensor can be calibrated in a convenient location such as a lab. Upon connection to the transmitter, the system is ready to measure in only a few seconds, so measurement point down time is very short. The dynamic lifetime indicator uses sophisticated algorithms to calculate the remaining life of the sensor, breweries therefore have confidence that the sensor won't fail unexpectedly.

Contact Alliance Technical Sales for more information. Call 630-321-9646 or visit https://alliancets.com.

A Better Way to Measure Dissolved Oxygen in Power Plant Pure Water Systems

measuring dissolved oxygen
In power plants, approximately half of unscheduled shutdowns can be traced to water cycle chemistry issues which involve costly repairs and lost operating revenue that can never be recovered. One of the most important parameters to measure to improve power plant water system efficiency is dissolved oxygen, DO. DO causes corrosion of components that contain iron and copper. Transport and deposits of these particles can also accelerate corrosion and damage critical plant equipment.

DO is measured at several locations in a water system. Traditionally, DO is measured with polarographic sensors, which use a gas permeable membrane to separate the sample from the electrochemical cell inside. Depending on the operating environment, polarographic sensors can require monthly electrolyte and membrane replacement.  After service, the sensor cannot produce meaningful readings for several hours because of required polarization. They are also sensitive to sample flow rate and experience interference from dissolved hydrogen.

pure water optical DO sensor
Mettler Toledo pure water optical DO sensor 
Unlike traditional DO sensors, the Mettler Toledo Thornton online pure water optical DO sensor does not require polarization. It uses optical technology to provide fast and accurate analysis. Its measurement response is six times faster than polarographic sensors. The optical DO sensor also does not use electrolyte or a membrane, so it's not sensitive to flow or susceptible to damage from particles and dissolved hydrogen interference. There is no interior body to replace, and service is required only once a year to quickly and easily replace the one-piece Optocap sensing element. This provides plants with lower operating costs and reduced downtime. 

The Mettler Toledo Thornton pure water optical DO sensor provides a fast, accurate and low-maintenance method of measuring dissolved oxygen concentration in power plant pure water systems.

For more information for any Mettler Toledo Process Analytics product, contact Alliance Technical Sales. Visit https://alliancets.com or call 630-321-9646.

Continuous Total Organic Carbon (TOC) Monitoring vs. At-line Batch Method


At-line batch TOC measurement can only provide snapshots of your water quality every six minutes or more. But alot can happen in six minutes. With true continuous TOC analysis you have real-time data to tell you exactly when an excursion starts and ends. This helps demonstrate compliance and gives you complete control of your water system. The Mettler-Toledo 6000TOCi provides real-time TOC compliance.

For more information, contact:
Alliance Technical Sales
https://alliancets.com
630-321-9646

Mettler Toledo Process Analytics Catalog 2018-2019

METTLER TOLEDO Process Analytics
The METTLER TOLEDO Process Analytics division concentrates on analytical measurement solutions for industrial manufacturing processes. The division consists of two business units: Ingold and Thornton, both recognized leaders in their respective markets and technologies.

Ingold is a worldwide leader in pH, dissolved oxygen, CO2, conductivity and turbidity solutions for process analytical measurement systems
in chemical, food & beverage, biotech- nology and pharmaceutical industries. Its core competence is high quality in-line measurement of these para- meters in demanding chemical process and hygienic and sterile applications.

Thornton is the leader in pure and ultrapure water monitoring instrumentation used in semiconductor, microelectronics, power generation, pharmaceutical, and biotech applications. Its core competence is the in-line measurement of conductivity, resistivity, TOC, bioburden, dissolved oxygen and ozone in determining and controlling water purity. The division recently expanded into Gas Analytics with a series of TDL analyzers offering unique in situ solutions.

Download the 2018-2019 Mettler Toledo Process Analytics Catalog here.

For more information, contact Alliance Technical Sales by calling 630-321-9646 or by visiting their website at https://alliancets.com.