Showing posts with label tunable diode laser gas analyzer. Show all posts
Showing posts with label tunable diode laser gas analyzer. Show all posts

The Role of TDL Analyzers in Ensuring Safety and Efficiency in Industrial Processes

The Role of TDL Analyzers in Ensuring Safety and Efficiency in Industrial Processes

A Tunable Diode Laser Analyzer (TDLA) is an analytical instrument that employs the technique of tunable diode laser absorption spectroscopy (TDLAS) for the measurement of concentration or moisture content in a process gas mixture. It works based on the principle that molecules absorb light at specific frequencies, and the amount of light absorbed is proportional to the concentration of the molecules.

How TDLA Works:


  • A diode laser emits light at a specific frequency towards the sample gas.
  • The sample gas absorbs some of the light depending on the concentration of the specific molecules.
  • The remaining light passes through the gas and reaches a detector on the other side.
  • The concentration of the gas can be determined by analyzing the intensity of the received light and comparing it to the emitted light.

Advantages of TDLA:

  1. Non-contact Measurement: TDLAs do not come in direct contact with the gas being analyzed, which is beneficial when the gas might be corrosive or at high temperatures.
  2. Fast Response: They provide almost real-time measurement, which is crucial in many industrial applications.
  3. Low Maintenance: They require minimal maintenance due to the lack of moving parts and direct contact with the sample.
  4. High Sensitivity and Precision: TDLAs can detect even low concentrations of gases with high accuracy.

Industrial Applications of TDLA:

  1. Power Plants: For measuring oxygen, carbon monoxide, and ammonia concentrations for combustion control and emissions monitoring.
  2. Petrochemical: In refineries, TDLAs monitor the concentration of different gases in processes such as reforming or ethylene production.
  3. Steel Industry: For measuring oxygen concentration in blast furnaces or carbon monoxide in coke ovens.
  4. Cement Industry: To monitor the concentration of gases like carbon monoxide or oxygen in kilns.
  5. Chemical Production: TDLAs monitor reactant and product concentrations in real time to ensure the optimal production rate.
  6. Natural Gas Processing: TDLAs measure moisture content, crucial in processing and transporting natural gas.
  7. Environmental Monitoring: TDLAs can be employed in stack monitoring systems to measure concentrations of pollutants.
METTLER TOLEDO's TDL analyzers stand out for their rapid and precise measurement capabilities. Notably, they offer minimal maintenance needs and remain unaffected by background gases, guaranteeing consistent results. The GPro 500 series, a notable line of tunable diode laser spectrometers from their collection, is engineered with diverse process adaptations, ensuring a tailored fit for your specific process needs and measurement criteria, underlining METTLER TOLEDO's commitment to versatility and precision.

In summary, Tunable Diode Laser Analyzers are sophisticated devices offering precise, fast, and reliable gas concentration measurements in various industrial settings. Their non-intrusive nature and low maintenance make them especially attractive for harsh industrial conditions.

Alliance Technical Sales, headquartered in Clarendon Hills, Illinois, can help you specify and apply Tunable Diode Laser Analyzers. Contact them at 630-321-9646 or visit their website at https://alliancets.com.

Eliminate Delayed Oxygen Measurement Safety Risk in Your Process Gas Analyzer


Having a car alarm that goes off 15 seconds after a break-in puts you at risk of property damage and significant loss. If you wouldn't take this risk with your car, why take it in your process plant?

If you're using an extractive oxygen analyzer that requires sampling and conditioning to prevent explosive conditions, that's exactly what you're getting - an alert up to 60 seconds after an oxygen build up is started. Using an extractive analyzer that requires sampling and conditioning means it's impossible to get real-time information. Measurements are delayed by up to a minute as the sample travels through pipes to the analyzer. In addition oxygen in the sample can be diluted by the gas ahead of and behind it, resulting in a falsely flat excursion curve. An alarm threshold may not be met when it should, so you get one, perhaps inaccurate, result in one minute.

Eliminate the risk. Get continuous real-time measurement. The GPro 500 tunable diode laser gas analyzer from Mettler-Toledo measures in-situ, without the need for sampling and conditioning. It provides continuous measurement and safety-critical applications, so you'll know about oxygen excursions immediately. Don't leave your plant safety up to delayed measurement. Rethink safety. Rethink gas analytics.

For more information, contact Alliance Technical Sales. Call them at 630-321-9646 or visit their web site at https://alliancets.com.