Showing posts with label pharmaceutical. Show all posts
Showing posts with label pharmaceutical. Show all posts

Thursday, September 6, 2018

The Preparation of Pharmaceutical Waters

Pharmaceutical Waters
While the public considers municipal water to be “pure”, the pharmaceutical market considers municipal water (feedwater) just the starting point in producing pure water. Water is the most widely used excipient in pharmaceutical manufacturing, and pharmaceutical water is a multi-functional resource, crossing all disciplines in the pharmaceutical industry. Water is used as a raw material, solvent, ingredient, reagent, and clean-ing agent, and is produced in a variety of “pure” forms.

Purified Water (PW), Highly Purified Water (HPW), and Water for Injection (WFI) used in pharmaceutical processes are produced on site from the local potable water, which has been produced by the treatment of the feedwater.

This best practice guide, titled "Pharmaceutical Waters Guide for Regulatory Compliance, Analysis and Real-Time Release" and produced by Mettler Toledo Thornton, provides insight on the following topics:

DOWNLOAD THE FULL GUIDE HERE.

Pharma Waters Overview


  • The Preparation of Pharmaceutical Waters
  • Pharmacopeia Overview
  • Industry Trends for Pharmaceutical Waters

Process Analytical Technology (PAT) and Intelligent Sensor Management (ISM)


  • Ensuring Pharmaceutical Water Compliance in a PAT Environment

Total Organic Carbon


  • Total Organic Carbon Measurement is a Key Control Point for Pharmaceutical Water Systems
  • Improving Water System Performance Continuous Real-Time TOC Measurements
  • Case Study: Real-Time TOC Analysis Safeguards Water Purity
  • Case Study: In-line TOC Monitoring: Reduces Production Downtime
  • Case Study: Leading Water Treatment Solution Provider Chooses METTLER TOLEDO Thornton
  • The Value of Measuring TOC in CIP and Cleaning Validation Applications

Conductivity/Resistivity


  • Ensuring the Absence of Ionic Impurities with Conductivity/Resistivity Measurements
  • Calibration Solutions for Pharmaceutical Waters
  • Case Study: Clean in Place Systems Manufacturer Relies on METTLER TOLEDO

Ozone


  • Reliable, Cost-effective Sanitization the Power of Ozone
  • Application and Control of Ozone Sanitization for Pharmaceutical Waters
  • Case Study: Critical Ozone Measurement in Purified Water Systems

Saturday, April 21, 2018

Process Refractometers for Food and Pharmaceutical Use

Process Refractometers
Process refractometer with sanitary adapter
for food and pharmaceutical. (Electron Machine)
There are many industrial applications for process refractometers; particularly useful in the food and pharmaceutical industries, where there is a need for solids content measurement. Process refractometers are used to optimize production processes, ensure consistency and purity, and in managing quality control. Process refractometers and inline process refractometers, are types of refractometers designed for the continuous measurement of a fluid flowing through a pipe or inside a tank. They provide analysis to quickly, dependably, and to accurately identify a sample to determine its concentration and purity levels. By measuring the refractive index and temperature of flowing liquids, refractometers can then apply a mathematical function to determine the precise concentration of dissolved solids.

In commercial food applications such as jam or jelly production or the processing of soft drinks or wine, refractometers are used to measure degrees Brix. Bix is a graduated scale, used on a hydrometer, that indicates the weight of sugar per volume of solution at a given temperature. The Brix scale relates refractive index to sugar concentration, and is a method of maintaining consistency. For example, process refractometers are used for the concentration process of fruit juices. The concentration process is normally achieved by removing water through evaporation, and by measuring Brix, the evaporation process can be controlled and related to the desired juice concentration.

Process refractometers are also used in pharmaceutical processing where there is the need to monitor and control concentration levels during supersaturation, a critical process in crystallization. Crystallization is a critical element in the purification of solids in pharmaceutical production. The process refractometer guarantees precise monitoring and a high degree of measurement accuracy and reliability, towards the production of a pure product.

For more information on the application of process refractometers, contact Alliance Technical Sales by visiting https://alliancets.com or by calling 630-321-9646

Friday, January 26, 2018

Continuous Microbial Monitoring For Process Water

production facility for sterile products pharmaceuticals
Real time microbial monitoring for process water builds
quality and production levels.
Monitoring process water microbial counts in the pharmaceutical industry has traditionally been a time consuming, hands-on operation. Sample preparation, plate counting, stains, reagents, and the time required to get results has kept microbial monitoring a cumbersome task that provides only snapshots of the process water quality at the time of sampling.

The Thornton Model 7000RMS from Mettler Toledo, a continuous on-line microbial monitoring system for purified water and water for injection, uses advanced laser based technology to provide immediate detection and quantification of microorganisms. Particles as small as .52 microns can be detected, and the monitor uses recent advancements in spectroscopic technology to differentiate between microbial and inert particles.

The 7000RMS puts on-line analytics for microbial contamination on the same timeline as TOC and conductivity, with all three critical aspects now subject to real time measurement.

The offers a white paper with a more detailed view of the system functions and the technology behind it. Additional product and application information is available. Share your water analysis and process analytic challenges with application experts, leveraging your own knowledge and experience with their product application expertise.


Friday, January 5, 2018

Best Practice Guide For Pharmaceutical Water Systems

sterile production facility with stainless steel vessels
Producing water for pharmaceutical production is a
critical process.
Pharmaceutical production operations utlizing water are common. The process and regulatory requirements for the water and the procedures employed for production and quality assurance are extensive and complex.

Mettler Toledo, through its Thornton brand, has a long history of involvement in pure water quality measurement. The company's sensors, analyzers and transmitters are found throughout many industrial settings where precision pure water quality measurements are the essential part of the operation.

Thornton recently published a helpful guide for best practices in pure water measurement. It is entitled "Compliance by Design in Pharmaceutical Water Systems". The document provides a summary of water sources and contaminants, then continues with an outline of industry requirements for bulk waters. The production of pure water is dicussed, and recommendations for pharmaceutical water system instrumentation are provided.

A copy of the document is provided below. Share your process analytical challenges with the application experts, leveraging your own process knowledge and experience with their product application expertise to develop effective solutions.


Wednesday, September 28, 2016

Continuous Microbial Monitoring For Pharmaceutical Waters

continuous on-line microbial monitor for pharmaceutical waters
Monitoring process water microbial counts in the pharmaceutical industry has traditionally been a time consuming, hands-on operation. Sample preparation, plate counting, stains, reagents, and the time required to get results has kept microbial monitoring a cumbersome task that provides only snapshots of the process water quality at the time of sampling.

Mettler Toledo has introduced its Model 7000RMS, a continuous on-line microbial monitoring system for purified water and water for injection. The system uses advanced laser based technology to provide immediate detection and quantification of microorganisms. Particles as small as .52 microns can be detected, and the monitor uses recent advancements in spectroscopic technology to differentiate between microbial and inert particles.

The 7000RMS puts on-line analytics for microbial contamination on the same timeline as TOC and conductivity, with all three critical aspects now subject to real time measurement.

The white paper included below delivers a deeper and more detailed view of the technology and the how the system works. Detailed application and product information is available from product specialists.


Tuesday, July 26, 2016

Real Time Direct Process Monitoring With Optical Spectroscopy

optical spectroscopy unit for real time process measurement
Optical spectroscopy unit for real time process measurement
Courtesy Prozess Technologie
Measurement and monitoring of process conditions is an essential part of producing the desired output. Some operations require, or can benefit from, faster or more accurate measurement of process variables. This can be especially true for chemical processes that rely on accurate mixing of components.

Process analyzers are available in a wide variety of technologies, configurations, performance ranges, and price points. Selecting the best analyzer for a particular process, take into consideration these points.

  • Technology - Assess whether the technology is cabable of producing the results needed
  • Accuracy - Measurement at levels appropriate for the process and operating goals
  • Specificity - Ability to reliably measure the subject components
  • First cost
  • Continuing costs of maintenance, expendables, calibration
  • Ease of use and integration into overall process measurement and control scheme
  • Reliability
One manufacturer, Prozess Technologie, approaches process analysis with their Reveal optical spectroscopy analyzer. It is capable of operating continuously without ongoing operator interaction. Internal calibration software provides stability and reliability. The software suite for the instrument is compliant with numerous standards and a host of communication standards are supported to allow for easy integration into a process measurement and control system.

Pick up more detail about the Reveal unit below. Share your analytical process challenges with a product application specialist. Combining your process knowledge with their product expertise will produce effective solutions.