Showing posts with label process heat. Show all posts
Showing posts with label process heat. Show all posts

Prevent Cold Weather from Affecting Your Outdoor Process Instrumentation

Ambient temperature will affect the measurement accuracy of process instruments. Additionally, when ambient temperatures are too low, fluids in the lines can freeze or thicken – resulting in physical damage. Instrumentation, manifold valves, actuators, and positioners exposed to adverse conditions need protection to avoid weather-related damage such as freezing.  

WinterShield™ Freeze Protection Heated Pockets (WSP Series) provide a "pocket" where the ambient air temperature within is maintained via a pre-set thermostat, thereby keeping your instrumentation well within typical operating specifications.

The WinterShield™ system provides a convenient, portable way to warm process equipment and keep it within proper operating temperatures. The design is indeed "plug and play" as they are entirely self-contained, include a power cord, thermostat, lacing, and insulation.

For more information, contact Alliance Technical Sales.

Alliance Technical Sales
630-321-9646
https://alliancets.com

Hazardous-area Approved Silicone Rubber Heating Blankets For Electrical Surface Heating in Hazardous Locations

Hazardous-area approved silicone rubber heating blankets for electrical surface heating in hazardous locations are available from BriskHeat. They provide a low profile heater design and are ideal for heating surfaces like tanks, hoppers, conveyors, silos, etc.

Silicone rubber heaters provide exceptional durability and longevity, plus moisture, chemical and radiation resistant. They are composed of heavy duty, extra thick silicone rubber which provides exceptional durability and longevity. Available with industrial strength pressure sensitive adhesive backing for easy installation and a patented grounded heating element for your safety meets NEC 427.23.

The resistance heating element is laminated between 4 layers of heavy duty fiberglass reinforced silicone rubber; two layers of 23mil and two layers of 25mil fiberglass reinforced silicone rubber. Optional built-in high-limit thermostats designed to keep blanket below NEC article 500 T-Rating are available.


Cloth Heating Jackets for Pipes, Tees, Valves, Fittings, and other Process Equipment

Cloth heating jacket
Cloth heating jacket (Briskheat)
Industrial heating applications are numerous and varied. Heating requirements can range from freeze protection to precise maintenance of process temperature in piping, equipment, or vessels. Two commonly employed heating sources are electric resistance heaters and plant steam. While each has certain advantages, steam may not always be available or practical. Electric heat offers a number of positive attributes.
  • Ease of design and installation
  • Precise control
  • Uniform heating across surfaces
  • Low maintenance requirement
  • Portability
  • Economical to purchase and install
  • Wide array of shapes, sizes, and configurations
  • Standard and custom products for every application
Cloth heating jackets are one of many electric heater variants. Formed to fit specific valves, fittings, or other items, these reusable heaters are comprised of an exterior of rugged fabric, a layer of thermal insulation, a heating blanket, and an electrical connection point or fitting. Hook and loop fasteners facilitate the unwrapping or opening of the jacket to allow for installation and removal. The surface remains cool to the touch for most applications. Control can be provided by any type of temperature controller, with prewired options available for inclusion with the heating jacket.

Construction of cloth heating jacket
Construction of cloth heating jacket (click for larger view).

Liner and Facing Material (Inside and Outside cloth material)
  • PTFE - Standard facing material. Exposure temperatures up to 500°F (260°C). Up to Class 10 environments. 
  • BriskClean - For cleanroom class 10. Exposure temperatures up to 600°F (315°C). 
  • Silicone Cloth Adds a degree of moisture and chemical resistance. Exposure temperatures up to 500°F (260°C).
  • Samox® -High temperature cloth. Exposure temperatures up to 1100°F (593°C). Up to Class 100 environments.
  • Aluminum- Facing material option. Exposure temperatures up to 450°F (232°C).
  • Fiberglass cloth - Liner material option. Exposure temperatures up to 900°F (482°C). Up to Class 100 environments.
Closure Options
  • Hook and loop fastener
  • Hook and lace
  • Grommets
Insulation (placed in between liner and facing)
  • Fits your application based upon process temperatures. BriskHeat's industry leading engineers will design your system with the correct amount of insulation. Insulation will make your system energy efficient and touch-safe.
Voltage Options
  • 120 - 600VAC
  • Single phase
  • 3 Phase (Wye)
  • 3 Phase (Delta)
  • 60 Hz.
  • 50 Hz.
  • DC
Power Plug / Connector Options
  • Mate-N-Lock
  • Twist lock
  • CPC connector
  • Bare wire
  • Other electrical connections available
Built-in Controlling / High-limit Safety Thermostat Options
  • 180°F (82°C)
  • 248°F (120°C)
  • 302°F (150°C)
  • 347°F (175°C)
  • 392°F (200°C)
  • 500°F (260°C)
  • Other temperatures available
Built-in Temperature Sensor Options
  • Platinum RTD
  • Type J thermocouple
  • Type K thermocouple
  • Thermistor
  • Other temperature sensors available
Built-in Low-Limit Alarm Thermostat Options
  • 180°F (82°C) with 30°F (17°C) differential
  • 248°F (120°C) with 50°F (28°C) differential
  • Other temperatures available

Common Industrial and Commercial Process Heating Methods

industrial heat process
Many industrial processes utilize heat as an energy input
Many industrial processes involve the use of heat as a means of increasing the energy content of a process or material. The means used for producing and delivering process heat can be grouped into four general categories.
  • Steam
  • Fuel
  • Electric
  • Hybrid
The technologies rely upon conduction, convection, or radiative heat transfer mechanisms, soley or in combination, to deliver heat to a substance. In practice, lower temperature processes tend to use conduction or convection. Operations employing very high temperature rely primarily on radiative heat transfer. Let's look at each of the four heating methods.

STEAM

Steam based heating systems introduce steam to the process either directly by injection, or indirectly through a heat transfer device. Large quantities of latent heat from steam can be transferred efficiently at a constant temperature, useful for many process heating applications. Steam based systems are predominantly for applications requiring a heat source at or below about 400°F and when low-cost fuel or byproducts for use in generating the steam are accessible. Cogeneration systems (the generation of electric power and useful waste heat in a single process) often use steam as the means to produce electric power and provide heat for additional uses. While steam serves as the medium by which heat energy is moved and delivered to a process or other usage, the actual energy source for the boiler that produces the steam can be one of several fuels, or even electricity.

FUEL

Fuel based process heating systems, through combustion of solid, liquid, or gaseous fuels, produce heat that can be transferred directly or indirectly to a process. Hot combustion gases are either placed in direct contact with the material (direct heating via convection) or routed through tubes or panels that deliver radiant heat and keep combustion gases separate from the material (indirect heating). Examples of fuel-based process heating equipment include furnaces, ovens, red heaters, kilns, melters, and high-temperature generators. The boilers producing steam that was described in the previous section are also an example of a fuel based process heating application.

ELECTRIC

Electric process heating systems also transform materials through direct and indirect means. Electric current can be applied directly to suitable materials, with the electrical resistance of the target material causing it to heat as current flows. Alternatively, high-frequency energy can be inductively coupled to some materials, resulting in indirect heating. Electric based process heating systems are used for heating, drying, curing, melting, and forming. Examples of electrically based process heating technologies include electric arc furnace technology, infrared radiation, induction heating, radio frequency drying, laser heating, and microwave processing.

HYBRID

Hybrid process heating systems utilize a combination of process heating technologies based on different energy sources or heating principles, with a design goal of optimizing energy performance and overall thermal efficiency. For example, a hybrid steam boiler may combine a fuel based boiler with an electric boiler to take advantage of access to low off-peak electricity cost. In an example of a hybrid drying system, electromagnetic energy (e.g., microwave or radio frequency) may be combined with convective hot air to accelerate drying processes; selectively targeting moisture with the penetrating electromagnetic energy can improve the speed, efficiency, and product quality as compared to a drying process based solely on convection, which can be rate limited by the thermal conductivity of the material. Optimizing the heat transfer mechanisms in hybrid systems offers a significant opportunity to reduce energy consumption, increase speed and throughput, and improve product quality.

Many heating applications, depending on scale, available energy source, and other factors may be served using one or more of the means described here. Determining the best heating method and implementation is a key element to a successful project. Alliance Technical Sales specializes in electric heating applications and facets of the industrial production of steam. Share your process and project challenges with them and combine your facilities and process knowledge and experience with their product application expertise to develop effective solutions.